📄 ac3dec.c
字号:
/* * AC-3 Audio Decoder * This code is developed as part of Google Summer of Code 2006 Program. * * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). * Copyright (c) 2007 Justin Ruggles * * Portions of this code are derived from liba52 * http://liba52.sourceforge.net * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */#include <stdio.h>#include <stddef.h>#include <math.h>#include <string.h>#include "libavutil/crc.h"#include "libavutil/random.h"#include "avcodec.h"#include "ac3_parser.h"#include "bitstream.h"#include "dsputil.h"#include "ac3dec.h"#include "ac3dec_data.h"/** Maximum possible frame size when the specification limit is ignored */#define AC3_MAX_FRAME_SIZE 21695/** table for grouping exponents */static uint8_t exp_ungroup_tab[128][3];/** tables for ungrouping mantissas */static int b1_mantissas[32][3];static int b2_mantissas[128][3];static int b3_mantissas[8];static int b4_mantissas[128][2];static int b5_mantissas[16];/** * Quantization table: levels for symmetric. bits for asymmetric. * reference: Table 7.18 Mapping of bap to Quantizer */static const uint8_t quantization_tab[16] = { 0, 3, 5, 7, 11, 15, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16};/** dynamic range table. converts codes to scale factors. */static float dynamic_range_tab[256];/** Adjustments in dB gain */#define LEVEL_PLUS_3DB 1.4142135623730950#define LEVEL_PLUS_1POINT5DB 1.1892071150027209#define LEVEL_MINUS_1POINT5DB 0.8408964152537145#define LEVEL_MINUS_3DB 0.7071067811865476#define LEVEL_MINUS_4POINT5DB 0.5946035575013605#define LEVEL_MINUS_6DB 0.5000000000000000#define LEVEL_MINUS_9DB 0.3535533905932738#define LEVEL_ZERO 0.0000000000000000#define LEVEL_ONE 1.0000000000000000static const float gain_levels[9] = { LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_1POINT5DB, LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO, LEVEL_MINUS_9DB};/** * Table for center mix levels * reference: Section 5.4.2.4 cmixlev */static const uint8_t center_levels[4] = { 4, 5, 6, 5 };/** * Table for surround mix levels * reference: Section 5.4.2.5 surmixlev */static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };/** * Table for default stereo downmixing coefficients * reference: Section 7.8.2 Downmixing Into Two Channels */static const uint8_t ac3_default_coeffs[8][5][2] = { { { 2, 7 }, { 7, 2 }, }, { { 4, 4 }, }, { { 2, 7 }, { 7, 2 }, }, { { 2, 7 }, { 5, 5 }, { 7, 2 }, }, { { 2, 7 }, { 7, 2 }, { 6, 6 }, }, { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, }, { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, }, { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },};/** * Symmetrical Dequantization * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization * Tables 7.19 to 7.23 */static inline intsymmetric_dequant(int code, int levels){ return ((code - (levels >> 1)) << 24) / levels;}/* * Initialize tables at runtime. */static av_cold void ac3_tables_init(void){ int i; /* generate grouped mantissa tables reference: Section 7.3.5 Ungrouping of Mantissas */ for(i=0; i<32; i++) { /* bap=1 mantissas */ b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3); b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3); b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3); } for(i=0; i<128; i++) { /* bap=2 mantissas */ b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5); b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5); b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5); /* bap=4 mantissas */ b4_mantissas[i][0] = symmetric_dequant(i / 11, 11); b4_mantissas[i][1] = symmetric_dequant(i % 11, 11); } /* generate ungrouped mantissa tables reference: Tables 7.21 and 7.23 */ for(i=0; i<7; i++) { /* bap=3 mantissas */ b3_mantissas[i] = symmetric_dequant(i, 7); } for(i=0; i<15; i++) { /* bap=5 mantissas */ b5_mantissas[i] = symmetric_dequant(i, 15); } /* generate dynamic range table reference: Section 7.7.1 Dynamic Range Control */ for(i=0; i<256; i++) { int v = (i >> 5) - ((i >> 7) << 3) - 5; dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20); } /* generate exponent tables reference: Section 7.1.3 Exponent Decoding */ for(i=0; i<128; i++) { exp_ungroup_tab[i][0] = i / 25; exp_ungroup_tab[i][1] = (i % 25) / 5; exp_ungroup_tab[i][2] = (i % 25) % 5; }}/** * AVCodec initialization */static av_cold int ac3_decode_init(AVCodecContext *avctx){ AC3DecodeContext *s = avctx->priv_data; s->avctx = avctx; ac3_common_init(); ac3_tables_init(); ff_mdct_init(&s->imdct_256, 8, 1); ff_mdct_init(&s->imdct_512, 9, 1); ff_kbd_window_init(s->window, 5.0, 256); dsputil_init(&s->dsp, avctx); av_init_random(0, &s->dith_state); /* set bias values for float to int16 conversion */ if(s->dsp.float_to_int16 == ff_float_to_int16_c) { s->add_bias = 385.0f; s->mul_bias = 1.0f; } else { s->add_bias = 0.0f; s->mul_bias = 32767.0f; } /* allow downmixing to stereo or mono */ if (avctx->channels > 0 && avctx->request_channels > 0 && avctx->request_channels < avctx->channels && avctx->request_channels <= 2) { avctx->channels = avctx->request_channels; } s->downmixed = 1; /* allocate context input buffer */ if (avctx->error_resilience >= FF_ER_CAREFUL) { s->input_buffer = av_mallocz(AC3_MAX_FRAME_SIZE + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->input_buffer) return AVERROR_NOMEM; } return 0;}/** * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream. * GetBitContext within AC3DecodeContext must point to * start of the synchronized ac3 bitstream. */static int ac3_parse_header(AC3DecodeContext *s){ GetBitContext *gbc = &s->gbc; int i; /* read the rest of the bsi. read twice for dual mono mode. */ i = !(s->channel_mode); do { skip_bits(gbc, 5); // skip dialog normalization if (get_bits1(gbc)) skip_bits(gbc, 8); //skip compression if (get_bits1(gbc)) skip_bits(gbc, 8); //skip language code if (get_bits1(gbc)) skip_bits(gbc, 7); //skip audio production information } while (i--); skip_bits(gbc, 2); //skip copyright bit and original bitstream bit /* skip the timecodes (or extra bitstream information for Alternate Syntax) TODO: read & use the xbsi1 downmix levels */ if (get_bits1(gbc)) skip_bits(gbc, 14); //skip timecode1 / xbsi1 if (get_bits1(gbc)) skip_bits(gbc, 14); //skip timecode2 / xbsi2 /* skip additional bitstream info */ if (get_bits1(gbc)) { i = get_bits(gbc, 6); do { skip_bits(gbc, 8); } while(i--); } return 0;}/** * Common function to parse AC3 or E-AC3 frame header */static int parse_frame_header(AC3DecodeContext *s){ AC3HeaderInfo hdr; GetBitContext *gbc = &s->gbc; int err; err = ff_ac3_parse_header(gbc, &hdr); if(err) return err; if(hdr.bitstream_id > 10) return AC3_PARSE_ERROR_BSID; /* get decoding parameters from header info */ s->bit_alloc_params.sr_code = hdr.sr_code; s->channel_mode = hdr.channel_mode; s->lfe_on = hdr.lfe_on; s->bit_alloc_params.sr_shift = hdr.sr_shift; s->sample_rate = hdr.sample_rate; s->bit_rate = hdr.bit_rate; s->channels = hdr.channels; s->fbw_channels = s->channels - s->lfe_on; s->lfe_ch = s->fbw_channels + 1; s->frame_size = hdr.frame_size; s->center_mix_level = hdr.center_mix_level; s->surround_mix_level = hdr.surround_mix_level; s->num_blocks = hdr.num_blocks; s->frame_type = hdr.frame_type; s->substreamid = hdr.substreamid; if(s->lfe_on) { s->start_freq[s->lfe_ch] = 0; s->end_freq[s->lfe_ch] = 7; s->num_exp_groups[s->lfe_ch] = 2; s->channel_in_cpl[s->lfe_ch] = 0; } return ac3_parse_header(s);}/** * Set stereo downmixing coefficients based on frame header info. * reference: Section 7.8.2 Downmixing Into Two Channels */static void set_downmix_coeffs(AC3DecodeContext *s){ int i; float cmix = gain_levels[center_levels[s->center_mix_level]]; float smix = gain_levels[surround_levels[s->surround_mix_level]]; for(i=0; i<s->fbw_channels; i++) { s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]]; s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]]; } if(s->channel_mode > 1 && s->channel_mode & 1) { s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix; } if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) { int nf = s->channel_mode - 2; s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB; } if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) { int nf = s->channel_mode - 4; s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix; } /* calculate adjustment needed for each channel to avoid clipping */ s->downmix_coeff_adjust[0] = s->downmix_coeff_adjust[1] = 0.0f; for(i=0; i<s->fbw_channels; i++) { s->downmix_coeff_adjust[0] += s->downmix_coeffs[i][0]; s->downmix_coeff_adjust[1] += s->downmix_coeffs[i][1]; } s->downmix_coeff_adjust[0] = 1.0f / s->downmix_coeff_adjust[0]; s->downmix_coeff_adjust[1] = 1.0f / s->downmix_coeff_adjust[1];}/** * Decode the grouped exponents according to exponent strategy. * reference: Section 7.1.3 Exponent Decoding */static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps, uint8_t absexp, int8_t *dexps){ int i, j, grp, group_size; int dexp[256]; int expacc, prevexp; /* unpack groups */ group_size = exp_strategy + (exp_strategy == EXP_D45); for(grp=0,i=0; grp<ngrps; grp++) { expacc = get_bits(gbc, 7); dexp[i++] = exp_ungroup_tab[expacc][0]; dexp[i++] = exp_ungroup_tab[expacc][1]; dexp[i++] = exp_ungroup_tab[expacc][2]; } /* convert to absolute exps and expand groups */ prevexp = absexp; for(i=0; i<ngrps*3; i++) { prevexp = av_clip(prevexp + dexp[i]-2, 0, 24); for(j=0; j<group_size; j++) { dexps[(i*group_size)+j] = prevexp; } }}/** * Generate transform coefficients for each coupled channel in the coupling * range using the coupling coefficients and coupling coordinates. * reference: Section 7.4.3 Coupling Coordinate Format */static void uncouple_channels(AC3DecodeContext *s){ int i, j, ch, bnd, subbnd; subbnd = -1; i = s->start_freq[CPL_CH]; for(bnd=0; bnd<s->num_cpl_bands; bnd++) { do { subbnd++; for(j=0; j<12; j++) { for(ch=1; ch<=s->fbw_channels; ch++) { if(s->channel_in_cpl[ch]) { s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23; if (ch == 2 && s->phase_flags[bnd]) s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i]; } } i++; } } while(s->cpl_band_struct[subbnd]); }}/** * Grouped mantissas for 3-level 5-level and 11-level quantization */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -