⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ac3dec.c

📁 ffmpeg移植到symbian的全部源代码
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * AC-3 Audio Decoder * This code is developed as part of Google Summer of Code 2006 Program. * * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). * Copyright (c) 2007 Justin Ruggles * * Portions of this code are derived from liba52 * http://liba52.sourceforge.net * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */#include <stdio.h>#include <stddef.h>#include <math.h>#include <string.h>#include "libavutil/crc.h"#include "libavutil/random.h"#include "avcodec.h"#include "ac3_parser.h"#include "bitstream.h"#include "dsputil.h"#include "ac3dec.h"#include "ac3dec_data.h"/** Maximum possible frame size when the specification limit is ignored */#define AC3_MAX_FRAME_SIZE 21695/** table for grouping exponents */static uint8_t exp_ungroup_tab[128][3];/** tables for ungrouping mantissas */static int b1_mantissas[32][3];static int b2_mantissas[128][3];static int b3_mantissas[8];static int b4_mantissas[128][2];static int b5_mantissas[16];/** * Quantization table: levels for symmetric. bits for asymmetric. * reference: Table 7.18 Mapping of bap to Quantizer */static const uint8_t quantization_tab[16] = {    0, 3, 5, 7, 11, 15,    5, 6, 7, 8, 9, 10, 11, 12, 14, 16};/** dynamic range table. converts codes to scale factors. */static float dynamic_range_tab[256];/** Adjustments in dB gain */#define LEVEL_PLUS_3DB          1.4142135623730950#define LEVEL_PLUS_1POINT5DB    1.1892071150027209#define LEVEL_MINUS_1POINT5DB   0.8408964152537145#define LEVEL_MINUS_3DB         0.7071067811865476#define LEVEL_MINUS_4POINT5DB   0.5946035575013605#define LEVEL_MINUS_6DB         0.5000000000000000#define LEVEL_MINUS_9DB         0.3535533905932738#define LEVEL_ZERO              0.0000000000000000#define LEVEL_ONE               1.0000000000000000static const float gain_levels[9] = {    LEVEL_PLUS_3DB,    LEVEL_PLUS_1POINT5DB,    LEVEL_ONE,    LEVEL_MINUS_1POINT5DB,    LEVEL_MINUS_3DB,    LEVEL_MINUS_4POINT5DB,    LEVEL_MINUS_6DB,    LEVEL_ZERO,    LEVEL_MINUS_9DB};/** * Table for center mix levels * reference: Section 5.4.2.4 cmixlev */static const uint8_t center_levels[4] = { 4, 5, 6, 5 };/** * Table for surround mix levels * reference: Section 5.4.2.5 surmixlev */static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };/** * Table for default stereo downmixing coefficients * reference: Section 7.8.2 Downmixing Into Two Channels */static const uint8_t ac3_default_coeffs[8][5][2] = {    { { 2, 7 }, { 7, 2 },                               },    { { 4, 4 },                                         },    { { 2, 7 }, { 7, 2 },                               },    { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },    { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },    { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },};/** * Symmetrical Dequantization * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization *            Tables 7.19 to 7.23 */static inline intsymmetric_dequant(int code, int levels){    return ((code - (levels >> 1)) << 24) / levels;}/* * Initialize tables at runtime. */static av_cold void ac3_tables_init(void){    int i;    /* generate grouped mantissa tables       reference: Section 7.3.5 Ungrouping of Mantissas */    for(i=0; i<32; i++) {        /* bap=1 mantissas */        b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);        b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);        b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);    }    for(i=0; i<128; i++) {        /* bap=2 mantissas */        b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);        b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);        b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);        /* bap=4 mantissas */        b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);        b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);    }    /* generate ungrouped mantissa tables       reference: Tables 7.21 and 7.23 */    for(i=0; i<7; i++) {        /* bap=3 mantissas */        b3_mantissas[i] = symmetric_dequant(i, 7);    }    for(i=0; i<15; i++) {        /* bap=5 mantissas */        b5_mantissas[i] = symmetric_dequant(i, 15);    }    /* generate dynamic range table       reference: Section 7.7.1 Dynamic Range Control */    for(i=0; i<256; i++) {        int v = (i >> 5) - ((i >> 7) << 3) - 5;        dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);    }    /* generate exponent tables       reference: Section 7.1.3 Exponent Decoding */    for(i=0; i<128; i++) {        exp_ungroup_tab[i][0] =  i / 25;        exp_ungroup_tab[i][1] = (i % 25) / 5;        exp_ungroup_tab[i][2] = (i % 25) % 5;    }}/** * AVCodec initialization */static av_cold int ac3_decode_init(AVCodecContext *avctx){    AC3DecodeContext *s = avctx->priv_data;    s->avctx = avctx;    ac3_common_init();    ac3_tables_init();    ff_mdct_init(&s->imdct_256, 8, 1);    ff_mdct_init(&s->imdct_512, 9, 1);    ff_kbd_window_init(s->window, 5.0, 256);    dsputil_init(&s->dsp, avctx);    av_init_random(0, &s->dith_state);    /* set bias values for float to int16 conversion */    if(s->dsp.float_to_int16 == ff_float_to_int16_c) {        s->add_bias = 385.0f;        s->mul_bias = 1.0f;    } else {        s->add_bias = 0.0f;        s->mul_bias = 32767.0f;    }    /* allow downmixing to stereo or mono */    if (avctx->channels > 0 && avctx->request_channels > 0 &&            avctx->request_channels < avctx->channels &&            avctx->request_channels <= 2) {        avctx->channels = avctx->request_channels;    }    s->downmixed = 1;    /* allocate context input buffer */    if (avctx->error_resilience >= FF_ER_CAREFUL) {        s->input_buffer = av_mallocz(AC3_MAX_FRAME_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);        if (!s->input_buffer)            return AVERROR_NOMEM;    }    return 0;}/** * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream. * GetBitContext within AC3DecodeContext must point to * start of the synchronized ac3 bitstream. */static int ac3_parse_header(AC3DecodeContext *s){    GetBitContext *gbc = &s->gbc;    int i;    /* read the rest of the bsi. read twice for dual mono mode. */    i = !(s->channel_mode);    do {        skip_bits(gbc, 5); // skip dialog normalization        if (get_bits1(gbc))            skip_bits(gbc, 8); //skip compression        if (get_bits1(gbc))            skip_bits(gbc, 8); //skip language code        if (get_bits1(gbc))            skip_bits(gbc, 7); //skip audio production information    } while (i--);    skip_bits(gbc, 2); //skip copyright bit and original bitstream bit    /* skip the timecodes (or extra bitstream information for Alternate Syntax)       TODO: read & use the xbsi1 downmix levels */    if (get_bits1(gbc))        skip_bits(gbc, 14); //skip timecode1 / xbsi1    if (get_bits1(gbc))        skip_bits(gbc, 14); //skip timecode2 / xbsi2    /* skip additional bitstream info */    if (get_bits1(gbc)) {        i = get_bits(gbc, 6);        do {            skip_bits(gbc, 8);        } while(i--);    }    return 0;}/** * Common function to parse AC3 or E-AC3 frame header */static int parse_frame_header(AC3DecodeContext *s){    AC3HeaderInfo hdr;    GetBitContext *gbc = &s->gbc;    int err;    err = ff_ac3_parse_header(gbc, &hdr);    if(err)        return err;    if(hdr.bitstream_id > 10)        return AC3_PARSE_ERROR_BSID;    /* get decoding parameters from header info */    s->bit_alloc_params.sr_code     = hdr.sr_code;    s->channel_mode                 = hdr.channel_mode;    s->lfe_on                       = hdr.lfe_on;    s->bit_alloc_params.sr_shift    = hdr.sr_shift;    s->sample_rate                  = hdr.sample_rate;    s->bit_rate                     = hdr.bit_rate;    s->channels                     = hdr.channels;    s->fbw_channels                 = s->channels - s->lfe_on;    s->lfe_ch                       = s->fbw_channels + 1;    s->frame_size                   = hdr.frame_size;    s->center_mix_level             = hdr.center_mix_level;    s->surround_mix_level           = hdr.surround_mix_level;    s->num_blocks                   = hdr.num_blocks;    s->frame_type                   = hdr.frame_type;    s->substreamid                  = hdr.substreamid;    if(s->lfe_on) {        s->start_freq[s->lfe_ch] = 0;        s->end_freq[s->lfe_ch] = 7;        s->num_exp_groups[s->lfe_ch] = 2;        s->channel_in_cpl[s->lfe_ch] = 0;    }    return ac3_parse_header(s);}/** * Set stereo downmixing coefficients based on frame header info. * reference: Section 7.8.2 Downmixing Into Two Channels */static void set_downmix_coeffs(AC3DecodeContext *s){    int i;    float cmix = gain_levels[center_levels[s->center_mix_level]];    float smix = gain_levels[surround_levels[s->surround_mix_level]];    for(i=0; i<s->fbw_channels; i++) {        s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];        s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];    }    if(s->channel_mode > 1 && s->channel_mode & 1) {        s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;    }    if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {        int nf = s->channel_mode - 2;        s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;    }    if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {        int nf = s->channel_mode - 4;        s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;    }    /* calculate adjustment needed for each channel to avoid clipping */    s->downmix_coeff_adjust[0] = s->downmix_coeff_adjust[1] = 0.0f;    for(i=0; i<s->fbw_channels; i++) {        s->downmix_coeff_adjust[0] += s->downmix_coeffs[i][0];        s->downmix_coeff_adjust[1] += s->downmix_coeffs[i][1];    }    s->downmix_coeff_adjust[0] = 1.0f / s->downmix_coeff_adjust[0];    s->downmix_coeff_adjust[1] = 1.0f / s->downmix_coeff_adjust[1];}/** * Decode the grouped exponents according to exponent strategy. * reference: Section 7.1.3 Exponent Decoding */static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,                             uint8_t absexp, int8_t *dexps){    int i, j, grp, group_size;    int dexp[256];    int expacc, prevexp;    /* unpack groups */    group_size = exp_strategy + (exp_strategy == EXP_D45);    for(grp=0,i=0; grp<ngrps; grp++) {        expacc = get_bits(gbc, 7);        dexp[i++] = exp_ungroup_tab[expacc][0];        dexp[i++] = exp_ungroup_tab[expacc][1];        dexp[i++] = exp_ungroup_tab[expacc][2];    }    /* convert to absolute exps and expand groups */    prevexp = absexp;    for(i=0; i<ngrps*3; i++) {        prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);        for(j=0; j<group_size; j++) {            dexps[(i*group_size)+j] = prevexp;        }    }}/** * Generate transform coefficients for each coupled channel in the coupling * range using the coupling coefficients and coupling coordinates. * reference: Section 7.4.3 Coupling Coordinate Format */static void uncouple_channels(AC3DecodeContext *s){    int i, j, ch, bnd, subbnd;    subbnd = -1;    i = s->start_freq[CPL_CH];    for(bnd=0; bnd<s->num_cpl_bands; bnd++) {        do {            subbnd++;            for(j=0; j<12; j++) {                for(ch=1; ch<=s->fbw_channels; ch++) {                    if(s->channel_in_cpl[ch]) {                        s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;                        if (ch == 2 && s->phase_flags[bnd])                            s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];                    }                }                i++;            }        } while(s->cpl_band_struct[subbnd]);    }}/** * Grouped mantissas for 3-level 5-level and 11-level quantization */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -