📄 alac.c
字号:
/* * ALAC (Apple Lossless Audio Codec) decoder * Copyright (c) 2005 David Hammerton * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *//** * @file alac.c * ALAC (Apple Lossless Audio Codec) decoder * @author 2005 David Hammerton * * For more information on the ALAC format, visit: * http://crazney.net/programs/itunes/alac.html * * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be * passed through the extradata[_size] fields. This atom is tacked onto * the end of an 'alac' stsd atom and has the following format: * bytes 0-3 atom size (0x24), big-endian * bytes 4-7 atom type ('alac', not the 'alac' tag from start of stsd) * bytes 8-35 data bytes needed by decoder * * Extradata: * 32bit size * 32bit tag (=alac) * 32bit zero? * 32bit max sample per frame * 8bit ?? (zero?) * 8bit sample size * 8bit history mult * 8bit initial history * 8bit kmodifier * 8bit channels? * 16bit ?? * 32bit max coded frame size * 32bit bitrate? * 32bit samplerate */#include "avcodec.h"#include "bitstream.h"#include "bytestream.h"#include "unary.h"#define ALAC_EXTRADATA_SIZE 36#define MAX_CHANNELS 2typedef struct { AVCodecContext *avctx; GetBitContext gb; /* init to 0; first frame decode should initialize from extradata and * set this to 1 */ int context_initialized; int numchannels; int bytespersample; /* buffers */ int32_t *predicterror_buffer[MAX_CHANNELS]; int32_t *outputsamples_buffer[MAX_CHANNELS]; /* stuff from setinfo */ uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */ uint8_t setinfo_sample_size; /* 0x10 */ uint8_t setinfo_rice_historymult; /* 0x28 */ uint8_t setinfo_rice_initialhistory; /* 0x0a */ uint8_t setinfo_rice_kmodifier; /* 0x0e */ /* end setinfo stuff */} ALACContext;static void allocate_buffers(ALACContext *alac){ int chan; for (chan = 0; chan < MAX_CHANNELS; chan++) { alac->predicterror_buffer[chan] = av_malloc(alac->setinfo_max_samples_per_frame * 4); alac->outputsamples_buffer[chan] = av_malloc(alac->setinfo_max_samples_per_frame * 4); }}static int alac_set_info(ALACContext *alac){ const unsigned char *ptr = alac->avctx->extradata; ptr += 4; /* size */ ptr += 4; /* alac */ ptr += 4; /* 0 ? */ if(AV_RB32(ptr) >= UINT_MAX/4){ av_log(alac->avctx, AV_LOG_ERROR, "setinfo_max_samples_per_frame too large\n"); return -1; } /* buffer size / 2 ? */ alac->setinfo_max_samples_per_frame = bytestream_get_be32(&ptr); ptr++; /* ??? */ alac->setinfo_sample_size = *ptr++; if (alac->setinfo_sample_size > 32) { av_log(alac->avctx, AV_LOG_ERROR, "setinfo_sample_size too large\n"); return -1; } alac->setinfo_rice_historymult = *ptr++; alac->setinfo_rice_initialhistory = *ptr++; alac->setinfo_rice_kmodifier = *ptr++; ptr++; /* channels? */ bytestream_get_be16(&ptr); /* ??? */ bytestream_get_be32(&ptr); /* max coded frame size */ bytestream_get_be32(&ptr); /* bitrate ? */ bytestream_get_be32(&ptr); /* samplerate */ allocate_buffers(alac); return 0;}static inline int decode_scalar(GetBitContext *gb, int k, int limit, int readsamplesize){ /* read x - number of 1s before 0 represent the rice */ int x = get_unary_0_9(gb); if (x > 8) { /* RICE THRESHOLD */ /* use alternative encoding */ x = get_bits(gb, readsamplesize); } else { if (k >= limit) k = limit; if (k != 1) { int extrabits = show_bits(gb, k); /* multiply x by 2^k - 1, as part of their strange algorithm */ x = (x << k) - x; if (extrabits > 1) { x += extrabits - 1; skip_bits(gb, k); } else skip_bits(gb, k - 1); } } return x;}static void bastardized_rice_decompress(ALACContext *alac, int32_t *output_buffer, int output_size, int readsamplesize, /* arg_10 */ int rice_initialhistory, /* arg424->b */ int rice_kmodifier, /* arg424->d */ int rice_historymult, /* arg424->c */ int rice_kmodifier_mask /* arg424->e */ ){ int output_count; unsigned int history = rice_initialhistory; int sign_modifier = 0; for (output_count = 0; output_count < output_size; output_count++) { int32_t x; int32_t x_modified; int32_t final_val; /* standard rice encoding */ int k; /* size of extra bits */ /* read k, that is bits as is */ k = av_log2((history >> 9) + 3); x= decode_scalar(&alac->gb, k, rice_kmodifier, readsamplesize); x_modified = sign_modifier + x; final_val = (x_modified + 1) / 2; if (x_modified & 1) final_val *= -1; output_buffer[output_count] = final_val; sign_modifier = 0; /* now update the history */ history += x_modified * rice_historymult - ((history * rice_historymult) >> 9); if (x_modified > 0xffff) history = 0xffff; /* special case: there may be compressed blocks of 0 */ if ((history < 128) && (output_count+1 < output_size)) { int k; unsigned int block_size; sign_modifier = 1; k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */); block_size= decode_scalar(&alac->gb, k, rice_kmodifier, 16); if (block_size > 0) { if(block_size >= output_size - output_count){ av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count); block_size= output_size - output_count - 1; } memset(&output_buffer[output_count+1], 0, block_size * 4); output_count += block_size; } if (block_size > 0xffff) sign_modifier = 0; history = 0; } }}static inline int32_t extend_sign32(int32_t val, int bits){ return (val << (32 - bits)) >> (32 - bits);}static inline int sign_only(int v){ return v ? FFSIGN(v) : 0;}static void predictor_decompress_fir_adapt(int32_t *error_buffer, int32_t *buffer_out, int output_size, int readsamplesize, int16_t *predictor_coef_table, int predictor_coef_num, int predictor_quantitization){ int i; /* first sample always copies */ *buffer_out = *error_buffer; if (!predictor_coef_num) { if (output_size <= 1) return; memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4); return; } if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */ /* second-best case scenario for fir decompression, * error describes a small difference from the previous sample only */ if (output_size <= 1) return; for (i = 0; i < output_size - 1; i++) { int32_t prev_value; int32_t error_value; prev_value = buffer_out[i]; error_value = error_buffer[i+1]; buffer_out[i+1] = extend_sign32((prev_value + error_value), readsamplesize); } return; } /* read warm-up samples */ if (predictor_coef_num > 0) for (i = 0; i < predictor_coef_num; i++) { int32_t val; val = buffer_out[i] + error_buffer[i+1]; val = extend_sign32(val, readsamplesize); buffer_out[i+1] = val; }#if 0 /* 4 and 8 are very common cases (the only ones i've seen). these * should be unrolled and optimized */ if (predictor_coef_num == 4) { /* FIXME: optimized general case */ return; } if (predictor_coef_table == 8) { /* FIXME: optimized general case */ return; }#endif /* general case */ if (predictor_coef_num > 0) { for (i = predictor_coef_num + 1; i < output_size; i++) { int j; int sum = 0; int outval; int error_val = error_buffer[i]; for (j = 0; j < predictor_coef_num; j++) { sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) * predictor_coef_table[j]; } outval = (1 << (predictor_quantitization-1)) + sum; outval = outval >> predictor_quantitization; outval = outval + buffer_out[0] + error_val; outval = extend_sign32(outval, readsamplesize); buffer_out[predictor_coef_num+1] = outval; if (error_val > 0) { int predictor_num = predictor_coef_num - 1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -