📄 tnaf.java
字号:
} else if (a.equals(ECConstants.ONE)) { mu = 1; } else { throw new IllegalArgumentException("No Koblitz curve (ABC), " + "TNAF multiplication not possible"); } return mu; } /** * Calculates the Lucas Sequence elements <code>U<sub>k-1</sub></code> and * <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> and * <code>V<sub>k</sub></code>. * @param mu The parameter <code>μ</code> of the elliptic curve. * @param k The index of the second element of the Lucas Sequence to be * returned. * @param doV If set to true, computes <code>V<sub>k-1</sub></code> and * <code>V<sub>k</sub></code>, otherwise <code>U<sub>k-1</sub></code> and * <code>U<sub>k</sub></code>. * @return An array with 2 elements, containing <code>U<sub>k-1</sub></code> * and <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> * and <code>V<sub>k</sub></code>. */ public static BigInteger[] getLucas(byte mu, int k, boolean doV) { if (!((mu == 1) || (mu == -1))) { throw new IllegalArgumentException("mu must be 1 or -1"); } BigInteger u0; BigInteger u1; BigInteger u2; if (doV) { u0 = ECConstants.TWO; u1 = BigInteger.valueOf(mu); } else { u0 = ECConstants.ZERO; u1 = ECConstants.ONE; } for (int i = 1; i < k; i++) { // u2 = mu*u1 - 2*u0; BigInteger s = null; if (mu == 1) { s = u1; } else { // mu == -1 s = u1.negate(); } u2 = s.subtract(u0.shiftLeft(1)); u0 = u1; u1 = u2;// System.out.println(i + ": " + u2);// System.out.println(); } BigInteger[] retVal = {u0, u1}; return retVal; } /** * Computes the auxiliary value <code>t<sub>w</sub></code>. If the width is * 4, then for <code>mu = 1</code>, <code>t<sub>w</sub> = 6</code> and for * <code>mu = -1</code>, <code>t<sub>w</sub> = 10</code> * @param mu The parameter <code>μ</code> of the elliptic curve. * @param w The window width of the WTNAF. * @return the auxiliary value <code>t<sub>w</sub></code> */ public static BigInteger getTw(byte mu, int w) { if (w == 4) { if (mu == 1) { return BigInteger.valueOf(6); } else { // mu == -1 return BigInteger.valueOf(10); } } else { // For w <> 4, the values must be computed BigInteger[] us = getLucas(mu, w, false); BigInteger twoToW = ECConstants.ZERO.setBit(w); BigInteger u1invert = us[1].modInverse(twoToW); BigInteger tw; tw = ECConstants.TWO.multiply(us[0]).multiply(u1invert).mod(twoToW);// System.out.println("mu = " + mu);// System.out.println("tw = " + tw); return tw; } } /** * Computes the auxiliary values <code>s<sub>0</sub></code> and * <code>s<sub>1</sub></code> used for partial modular reduction. * @param curve The elliptic curve for which to compute * <code>s<sub>0</sub></code> and <code>s<sub>1</sub></code>. * @throws IllegalArgumentException if <code>curve</code> is not a * Koblitz curve (Anomalous Binary Curve, ABC). */ public static BigInteger[] getSi(ECCurve.F2m curve) { if (!curve.isKoblitz()) { throw new IllegalArgumentException("si is defined for Koblitz curves only"); } int m = curve.getM(); int a = curve.getA().toBigInteger().intValue(); byte mu = curve.getMu(); int h = curve.getH().intValue(); int index = m + 3 - a; BigInteger[] ui = getLucas(mu, index, false); BigInteger dividend0; BigInteger dividend1; if (mu == 1) { dividend0 = ECConstants.ONE.subtract(ui[1]); dividend1 = ECConstants.ONE.subtract(ui[0]); } else if (mu == -1) { dividend0 = ECConstants.ONE.add(ui[1]); dividend1 = ECConstants.ONE.add(ui[0]); } else { throw new IllegalArgumentException("mu must be 1 or -1"); } BigInteger[] si = new BigInteger[2]; if (h == 2) { si[0] = dividend0.shiftRight(1); si[1] = dividend1.shiftRight(1).negate(); } else if (h == 4) { si[0] = dividend0.shiftRight(2); si[1] = dividend1.shiftRight(2).negate(); } else { throw new IllegalArgumentException("h (Cofactor) must be 2 or 4"); } return si; } /** * Partial modular reduction modulo * <code>(τ<sup>m</sup> - 1)/(τ - 1)</code>. * @param k The integer to be reduced. * @param m The bitlength of the underlying finite field. * @param a The parameter <code>a</code> of the elliptic curve. * @param s The auxiliary values <code>s<sub>0</sub></code> and * <code>s<sub>1</sub></code>. * @param mu The parameter μ of the elliptic curve. * @param c The precision (number of bits of accuracy) of the partial * modular reduction. * @return <code>ρ := k partmod (τ<sup>m</sup> - 1)/(τ - 1)</code> */ public static ZTauElement partModReduction(BigInteger k, int m, byte a, BigInteger[] s, byte mu, byte c) { // d0 = s[0] + mu*s[1]; mu is either 1 or -1 BigInteger d0; if (mu == 1) { d0 = s[0].add(s[1]); } else { d0 = s[0].subtract(s[1]); } BigInteger[] v = getLucas(mu, m, true); BigInteger vm = v[1]; SimpleBigDecimal lambda0 = approximateDivisionByN( k, s[0], vm, a, m, c); SimpleBigDecimal lambda1 = approximateDivisionByN( k, s[1], vm, a, m, c); ZTauElement q = round(lambda0, lambda1, mu); // r0 = n - d0*q0 - 2*s1*q1 BigInteger r0 = k.subtract(d0.multiply(q.u)).subtract( BigInteger.valueOf(2).multiply(s[1]).multiply(q.v)); // r1 = s1*q0 - s0*q1 BigInteger r1 = s[1].multiply(q.u).subtract(s[0].multiply(q.v)); return new ZTauElement(r0, r1); } /** * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.F2m ECPoint.F2m} * by a <code>BigInteger</code> using the reduced <code>τ</code>-adic * NAF (RTNAF) method. * @param p The ECPoint.F2m to multiply. * @param k The <code>BigInteger</code> by which to multiply <code>p</code>. * @return <code>k * p</code> */ public static ECPoint.F2m multiplyRTnaf(ECPoint.F2m p, BigInteger k) { ECCurve.F2m curve = (ECCurve.F2m) p.getCurve(); int m = curve.getM(); byte a = (byte) curve.getA().toBigInteger().intValue(); byte mu = curve.getMu(); BigInteger[] s = curve.getSi(); ZTauElement rho = partModReduction(k, m, a, s, mu, (byte)10); return multiplyTnaf(p, rho); } /** * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.F2m ECPoint.F2m} * by an element <code>λ</code> of <code><b>Z</b>[τ]</code> * using the <code>τ</code>-adic NAF (TNAF) method. * @param p The ECPoint.F2m to multiply. * @param lambda The element <code>λ</code> of * <code><b>Z</b>[τ]</code>. * @return <code>λ * p</code> */ public static ECPoint.F2m multiplyTnaf(ECPoint.F2m p, ZTauElement lambda) { ECCurve.F2m curve = (ECCurve.F2m)p.getCurve(); byte mu = curve.getMu(); byte[] u = tauAdicNaf(mu, lambda); ECPoint.F2m q = multiplyFromTnaf(p, u); return q; } /** * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.F2m ECPoint.F2m} * by an element <code>λ</code> of <code><b>Z</b>[τ]</code> * using the <code>τ</code>-adic NAF (TNAF) method, given the TNAF * of <code>λ</code>. * @param p The ECPoint.F2m to multiply. * @param u The the TNAF of <code>λ</code>.. * @return <code>λ * p</code> */ public static ECPoint.F2m multiplyFromTnaf(ECPoint.F2m p, byte[] u) { ECCurve.F2m curve = (ECCurve.F2m)p.getCurve(); ECPoint.F2m q = (ECPoint.F2m) curve.getInfinity(); for (int i = u.length - 1; i >= 0; i--) { q = tau(q); if (u[i] == 1) { q = (ECPoint.F2m)q.addSimple(p); } else if (u[i] == -1) { q = (ECPoint.F2m)q.subtractSimple(p); } } return q; } /** * Computes the <code>[τ]</code>-adic window NAF of an element * <code>λ</code> of <code><b>Z</b>[τ]</code>. * @param mu The parameter μ of the elliptic curve. * @param lambda The element <code>λ</code> of * <code><b>Z</b>[τ]</code> of which to compute the * <code>[τ]</code>-adic NAF. * @param width The window width of the resulting WNAF. * @param pow2w 2<sup>width</sup>. * @param tw The auxiliary value <code>t<sub>w</sub></code>. * @param alpha The <code>α<sub>u</sub></code>'s for the window width. * @return The <code>[τ]</code>-adic window NAF of * <code>λ</code>. */ public static byte[] tauAdicWNaf(byte mu, ZTauElement lambda, byte width, BigInteger pow2w, BigInteger tw, ZTauElement[] alpha) { if (!((mu == 1) || (mu == -1))) { throw new IllegalArgumentException("mu must be 1 or -1"); } BigInteger norm = norm(mu, lambda); // Ceiling of log2 of the norm int log2Norm = norm.bitLength(); // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52 int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width; // The array holding the TNAF byte[] u = new byte[maxLength]; // 2^(width - 1) BigInteger pow2wMin1 = pow2w.shiftRight(1); // Split lambda into two BigIntegers to simplify calculations BigInteger r0 = lambda.u; BigInteger r1 = lambda.v; int i = 0; // while lambda <> (0, 0) while (!((r0.equals(ECConstants.ZERO))&&(r1.equals(ECConstants.ZERO)))) { // if r0 is odd if (r0.testBit(0)) { // uUnMod = r0 + r1*tw mod 2^width BigInteger uUnMod = r0.add(r1.multiply(tw)).mod(pow2w); byte uLocal; // if uUnMod >= 2^(width - 1) if (uUnMod.compareTo(pow2wMin1) >= 0) { uLocal = (byte) uUnMod.subtract(pow2w).intValue(); } else { uLocal = (byte) uUnMod.intValue(); } // uLocal is now in [-2^(width-1), 2^(width-1)-1] u[i] = uLocal; boolean s = true; if (uLocal < 0) { s = false; uLocal = (byte)-uLocal; } // uLocal is now >= 0 if (s) { r0 = r0.subtract(alpha[uLocal].u); r1 = r1.subtract(alpha[uLocal].v); } else { r0 = r0.add(alpha[uLocal].u); r1 = r1.add(alpha[uLocal].v); } } else { u[i] = 0; } BigInteger t = r0; if (mu == 1) { r0 = r1.add(r0.shiftRight(1)); } else { // mu == -1 r0 = r1.subtract(r0.shiftRight(1)); } r1 = t.shiftRight(1).negate(); i++; } return u; } /** * Does the precomputation for WTNAF multiplication. * @param p The <code>ECPoint</code> for which to do the precomputation. * @param a The parameter <code>a</code> of the elliptic curve. * @return The precomputation array for <code>p</code>. */ public static ECPoint.F2m[] getPreComp(ECPoint.F2m p, byte a) { ECPoint.F2m[] pu; pu = new ECPoint.F2m[16]; pu[1] = p; byte[][] alphaTnaf; if (a == 0) { alphaTnaf = Tnaf.alpha0Tnaf; } else { // a == 1 alphaTnaf = Tnaf.alpha1Tnaf; } int precompLen = alphaTnaf.length; for (int i = 3; i < precompLen; i = i + 2) { pu[i] = Tnaf.multiplyFromTnaf(p, alphaTnaf[i]); } return pu; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -