📄 tnaf.java
字号:
package org.bouncycastle.math.ec;import java.math.BigInteger;/** * Class holding methods for point multiplication based on the window * τ-adic nonadjacent form (WTNAF). The algorithms are based on the * paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves" * by Jerome A. Solinas. The paper first appeared in the Proceedings of * Crypto 1997. */class Tnaf{ private static final BigInteger MINUS_ONE = ECConstants.ONE.negate(); private static final BigInteger MINUS_TWO = ECConstants.TWO.negate(); private static final BigInteger MINUS_THREE = ECConstants.THREE.negate(); /** * The window width of WTNAF. The standard value of 4 is slightly less * than optimal for running time, but keeps space requirements for * precomputation low. For typical curves, a value of 5 or 6 results in * a better running time. When changing this value, the * <code>α<sub>u</sub></code>'s must be computed differently, see * e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson, * Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004, * p. 121-122 */ public static final byte WIDTH = 4; /** * 2<sup>4</sup> */ public static final byte POW_2_WIDTH = 16; /** * The <code>α<sub>u</sub></code>'s for <code>a=0</code> as an array * of <code>ZTauElement</code>s. */ public static final ZTauElement[] alpha0 = { null, new ZTauElement(ECConstants.ONE, ECConstants.ZERO), null, new ZTauElement(MINUS_THREE, MINUS_ONE), null, new ZTauElement(MINUS_ONE, MINUS_ONE), null, new ZTauElement(ECConstants.ONE, MINUS_ONE), null }; /** * The <code>α<sub>u</sub></code>'s for <code>a=0</code> as an array * of TNAFs. */ public static final byte[][] alpha0Tnaf = { null, {1}, null, {-1, 0, 1}, null, {1, 0, 1}, null, {-1, 0, 0, 1} }; /** * The <code>α<sub>u</sub></code>'s for <code>a=1</code> as an array * of <code>ZTauElement</code>s. */ public static final ZTauElement[] alpha1 = {null, new ZTauElement(ECConstants.ONE, ECConstants.ZERO), null, new ZTauElement(MINUS_THREE, ECConstants.ONE), null, new ZTauElement(MINUS_ONE, ECConstants.ONE), null, new ZTauElement(ECConstants.ONE, ECConstants.ONE), null }; /** * The <code>α<sub>u</sub></code>'s for <code>a=1</code> as an array * of TNAFs. */ public static final byte[][] alpha1Tnaf = { null, {1}, null, {-1, 0, 1}, null, {1, 0, 1}, null, {-1, 0, 0, -1} }; /** * Computes the norm of an element <code>λ</code> of * <code><b>Z</b>[τ]</code>. * @param mu The parameter <code>μ</code> of the elliptic curve. * @param lambda The element <code>λ</code> of * <code><b>Z</b>[τ]</code>. * @return The norm of <code>λ</code>. */ public static BigInteger norm(final byte mu, ZTauElement lambda) { BigInteger norm; // s1 = u^2 BigInteger s1 = lambda.u.multiply(lambda.u); // s2 = u * v BigInteger s2 = lambda.u.multiply(lambda.v); // s3 = 2 * v^2 BigInteger s3 = lambda.v.multiply(lambda.v).shiftLeft(1); if (mu == 1) { norm = s1.add(s2).add(s3); } else if (mu == -1) { norm = s1.subtract(s2).add(s3); } else { throw new IllegalArgumentException("mu must be 1 or -1"); } return norm; } /** * Computes the norm of an element <code>λ</code> of * <code><b>R</b>[τ]</code>, where <code>λ = u + vτ</code> * and <code>u</code> and <code>u</code> are real numbers (elements of * <code><b>R</b></code>). * @param mu The parameter <code>μ</code> of the elliptic curve. * @param u The real part of the element <code>λ</code> of * <code><b>R</b>[τ]</code>. * @param v The <code>τ</code>-adic part of the element * <code>λ</code> of <code><b>R</b>[τ]</code>. * @return The norm of <code>λ</code>. */ public static SimpleBigDecimal norm(final byte mu, SimpleBigDecimal u, SimpleBigDecimal v) { SimpleBigDecimal norm; // s1 = u^2 SimpleBigDecimal s1 = u.multiply(u); // s2 = u * v SimpleBigDecimal s2 = u.multiply(v); // s3 = 2 * v^2 SimpleBigDecimal s3 = v.multiply(v).shiftLeft(1); if (mu == 1) { norm = s1.add(s2).add(s3); } else if (mu == -1) { norm = s1.subtract(s2).add(s3); } else { throw new IllegalArgumentException("mu must be 1 or -1"); } return norm; } /** * Rounds an element <code>λ</code> of <code><b>R</b>[τ]</code> * to an element of <code><b>Z</b>[τ]</code>, such that their difference * has minimal norm. <code>λ</code> is given as * <code>λ = λ<sub>0</sub> + λ<sub>1</sub>τ</code>. * @param lambda0 The component <code>λ<sub>0</sub></code>. * @param lambda1 The component <code>λ<sub>1</sub></code>. * @param mu The parameter <code>μ</code> of the elliptic curve. Must * equal 1 or -1. * @return The rounded element of <code><b>Z</b>[τ]</code>. * @throws IllegalArgumentException if <code>lambda0</code> and * <code>lambda1</code> do not have same scale. */ public static ZTauElement round(SimpleBigDecimal lambda0, SimpleBigDecimal lambda1, byte mu) { int scale = lambda0.getScale(); if (lambda1.getScale() != scale) { throw new IllegalArgumentException("lambda0 and lambda1 do not " + "have same scale"); } if (!((mu == 1) || (mu == -1))) { throw new IllegalArgumentException("mu must be 1 or -1"); } BigInteger f0 = lambda0.round(); BigInteger f1 = lambda1.round(); SimpleBigDecimal eta0 = lambda0.subtract(f0); SimpleBigDecimal eta1 = lambda1.subtract(f1); // eta = 2*eta0 + mu*eta1 SimpleBigDecimal eta = eta0.add(eta0); if (mu == 1) { eta = eta.add(eta1); } else { // mu == -1 eta = eta.subtract(eta1); } // check1 = eta0 - 3*mu*eta1 // check2 = eta0 + 4*mu*eta1 SimpleBigDecimal threeEta1 = eta1.add(eta1).add(eta1); SimpleBigDecimal fourEta1 = threeEta1.add(eta1); SimpleBigDecimal check1; SimpleBigDecimal check2; if (mu == 1) { check1 = eta0.subtract(threeEta1); check2 = eta0.add(fourEta1); } else { // mu == -1 check1 = eta0.add(threeEta1); check2 = eta0.subtract(fourEta1); } byte h0 = 0; byte h1 = 0; // if eta >= 1 if (eta.compareTo(ECConstants.ONE) >= 0) { if (check1.compareTo(MINUS_ONE) < 0) { h1 = mu; } else { h0 = 1; } } else { // eta < 1 if (check2.compareTo(ECConstants.TWO) >= 0) { h1 = mu; } } // if eta < -1 if (eta.compareTo(MINUS_ONE) < 0) { if (check1.compareTo(ECConstants.ONE) >= 0) { h1 = (byte)-mu; } else { h0 = -1; } } else { // eta >= -1 if (check2.compareTo(MINUS_TWO) < 0) { h1 = (byte)-mu; } } BigInteger q0 = f0.add(BigInteger.valueOf(h0)); BigInteger q1 = f1.add(BigInteger.valueOf(h1)); return new ZTauElement(q0, q1); } /** * Approximate division by <code>n</code>. For an integer * <code>k</code>, the value <code>λ = s k / n</code> is * computed to <code>c</code> bits of accuracy. * @param k The parameter <code>k</code>. * @param s The curve parameter <code>s<sub>0</sub></code> or * <code>s<sub>1</sub></code>. * @param vm The Lucas Sequence element <code>V<sub>m</sub></code>. * @param a The parameter <code>a</code> of the elliptic curve. * @param m The bit length of the finite field * <code><b>F</b><sub>m</sub></code>. * @param c The number of bits of accuracy, i.e. the scale of the returned * <code>SimpleBigDecimal</code>. * @return The value <code>λ = s k / n</code> computed to * <code>c</code> bits of accuracy. */ public static SimpleBigDecimal approximateDivisionByN(BigInteger k, BigInteger s, BigInteger vm, byte a, int m, int c) { int _k = (m + 5)/2 + c; BigInteger ns = k.shiftRight(m - _k - 2 + a); BigInteger gs = s.multiply(ns); BigInteger hs = gs.shiftRight(m); BigInteger js = vm.multiply(hs); BigInteger gsPlusJs = gs.add(js); BigInteger ls = gsPlusJs.shiftRight(_k-c); if (gsPlusJs.testBit(_k-c-1)) { // round up ls = ls.add(ECConstants.ONE); } return new SimpleBigDecimal(ls, c); } /** * Computes the <code>τ</code>-adic NAF (non-adjacent form) of an * element <code>λ</code> of <code><b>Z</b>[τ]</code>. * @param mu The parameter <code>μ</code> of the elliptic curve. * @param lambda The element <code>λ</code> of * <code><b>Z</b>[τ]</code>. * @return The <code>τ</code>-adic NAF of <code>λ</code>. */ public static byte[] tauAdicNaf(byte mu, ZTauElement lambda) { if (!((mu == 1) || (mu == -1))) { throw new IllegalArgumentException("mu must be 1 or -1"); } BigInteger norm = norm(mu, lambda); // Ceiling of log2 of the norm int log2Norm = norm.bitLength(); // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52 int maxLength = log2Norm > 30 ? log2Norm + 4 : 34; // The array holding the TNAF byte[] u = new byte[maxLength]; int i = 0; // The actual length of the TNAF int length = 0; BigInteger r0 = lambda.u; BigInteger r1 = lambda.v; while(!((r0.equals(ECConstants.ZERO)) && (r1.equals(ECConstants.ZERO)))) { // If r0 is odd if (r0.testBit(0)) { u[i] = (byte) ECConstants.TWO.subtract((r0.subtract(r1.shiftLeft(1))).mod(ECConstants.FOUR)).intValue(); // r0 = r0 - u[i] if (u[i] == 1) { r0 = r0.clearBit(0); } else { // u[i] == -1 r0 = r0.add(ECConstants.ONE); } length = i; } else { u[i] = 0; } BigInteger t = r0; BigInteger s = r0.shiftRight(1); if (mu == 1) { r0 = r1.add(s); } else { // mu == -1 r0 = r1.subtract(s); } r1 = t.shiftRight(1).negate(); i++; } length++; // Reduce the TNAF array to its actual length byte[] tnaf = new byte[length]; System.arraycopy(u, 0, tnaf, 0, length); return tnaf; } /** * Applies the operation <code>τ()</code> to an * <code>ECPoint.F2m</code>. * @param p The ECPoint.F2m to which <code>τ()</code> is applied. * @return <code>τ(p)</code> */ public static ECPoint.F2m tau(ECPoint.F2m p) { if (p.isInfinity()) { return p; } ECFieldElement x = p.getX(); ECFieldElement y = p.getY(); return new ECPoint.F2m(p.getCurve(), x.square(), y.square(), p.isCompressed()); } /** * Returns the parameter <code>μ</code> of the elliptic curve. * @param curve The elliptic curve from which to obtain <code>μ</code>. * The curve must be a Koblitz curve, i.e. <code>a</code> equals * <code>0</code> or <code>1</code> and <code>b</code> equals * <code>1</code>. * @return <code>μ</code> of the elliptic curve. * @throws IllegalArgumentException if the given ECCurve is not a Koblitz * curve. */ public static byte getMu(ECCurve.F2m curve) { BigInteger a = curve.getA().toBigInteger(); byte mu; if (a.equals(ECConstants.ZERO)) { mu = -1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -