⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rc6engine.java

📁 kmlnjlkj nlkjlkjkljl okopokipoipo oipipipo i
💻 JAVA
字号:
package org.bouncycastle.crypto.engines;import org.bouncycastle.crypto.BlockCipher;import org.bouncycastle.crypto.CipherParameters;import org.bouncycastle.crypto.DataLengthException;import org.bouncycastle.crypto.params.KeyParameter;/** * An RC6 engine. */public class RC6Engine    implements BlockCipher{    private static final int wordSize = 32;    private static final int bytesPerWord = wordSize / 8;    /*     * the number of rounds to perform     */    private static final int _noRounds = 20;    /*     * the expanded key array of size 2*(rounds + 1)     */    private int _S[];    /*     * our "magic constants" for wordSize 32     *     * Pw = Odd((e-2) * 2^wordsize)     * Qw = Odd((o-2) * 2^wordsize)     *     * where e is the base of natural logarithms (2.718281828...)     * and o is the golden ratio (1.61803398...)     */    private static final int    P32 = 0xb7e15163;    private static final int    Q32 = 0x9e3779b9;    private static final int    LGW = 5;        // log2(32)    private boolean forEncryption;    /**     * Create an instance of the RC6 encryption algorithm     * and set some defaults     */    public RC6Engine()    {        _S            = null;    }    public String getAlgorithmName()    {        return "RC6";    }    public int getBlockSize()    {        return 4 * bytesPerWord;    }    /**     * initialise a RC5-32 cipher.     *     * @param forEncryption whether or not we are for encryption.     * @param params the parameters required to set up the cipher.     * @exception IllegalArgumentException if the params argument is     * inappropriate.     */    public void init(        boolean             forEncryption,        CipherParameters    params)    {        if (!(params instanceof KeyParameter))        {            throw new IllegalArgumentException("invalid parameter passed to RC6 init - " + params.getClass().getName());        }        KeyParameter       p = (KeyParameter)params;        this.forEncryption = forEncryption;        setKey(p.getKey());    }    public int processBlock(        byte[]  in,        int     inOff,        byte[]  out,        int     outOff)    {        int blockSize = getBlockSize();        if (_S == null)        {            throw new IllegalStateException("RC6 engine not initialised");        }        if ((inOff + blockSize) > in.length)        {            throw new DataLengthException("input buffer too short");        }        if ((outOff + blockSize) > out.length)        {            throw new DataLengthException("output buffer too short");        }        return (forEncryption)            ?   encryptBlock(in, inOff, out, outOff)             :   decryptBlock(in, inOff, out, outOff);    }    public void reset()    {    }    /**     * Re-key the cipher.     * <p>     * @param  inKey  the key to be used     */    private void setKey(        byte[]      key)    {        //        // KEY EXPANSION:        //        // There are 3 phases to the key expansion.        //        // Phase 1:        //   Copy the secret key K[0...b-1] into an array L[0..c-1] of        //   c = ceil(b/u), where u = wordSize/8 in little-endian order.        //   In other words, we fill up L using u consecutive key bytes        //   of K. Any unfilled byte positions in L are zeroed. In the        //   case that b = c = 0, set c = 1 and L[0] = 0.        //        // compute number of dwords        int c = (key.length + (bytesPerWord - 1)) / bytesPerWord;        if (c == 0)        {            c = 1;        }        int[]   L = new int[(key.length + bytesPerWord - 1) / bytesPerWord];        // load all key bytes into array of key dwords        for (int i = key.length - 1; i >= 0; i--)        {            L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);        }        //        // Phase 2:        //   Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.        //   Initialize S to a particular fixed pseudo-random bit pattern        //   using an arithmetic progression modulo 2^wordsize determined        //   by the magic numbers, Pw & Qw.        //        _S            = new int[2+2*_noRounds+2];        _S[0] = P32;        for (int i=1; i < _S.length; i++)        {            _S[i] = (_S[i-1] + Q32);        }        //        // Phase 3:        //   Mix in the user's secret key in 3 passes over the arrays S & L.        //   The max of the arrays sizes is used as the loop control        //        int iter;        if (L.length > _S.length)        {            iter = 3 * L.length;        }        else        {            iter = 3 * _S.length;        }        int A = 0;        int B = 0;        int i = 0, j = 0;        for (int k = 0; k < iter; k++)        {            A = _S[i] = rotateLeft(_S[i] + A + B, 3);            B =  L[j] = rotateLeft(L[j] + A + B, A+B);            i = (i+1) % _S.length;            j = (j+1) %  L.length;        }    }    private int encryptBlock(        byte[]  in,        int     inOff,        byte[]  out,        int     outOff)    {        // load A,B,C and D registers from in.        int A = bytesToWord(in, inOff);        int B = bytesToWord(in, inOff + bytesPerWord);        int C = bytesToWord(in, inOff + bytesPerWord*2);        int D = bytesToWord(in, inOff + bytesPerWord*3);                // Do pseudo-round #0: pre-whitening of B and D        B += _S[0];        D += _S[1];        // perform round #1,#2 ... #ROUNDS of encryption         for (int i = 1; i <= _noRounds; i++)        {            int t = 0,u = 0;                        t = B*(2*B+1);            t = rotateLeft(t,5);                        u = D*(2*D+1);            u = rotateLeft(u,5);                        A ^= t;            A = rotateLeft(A,u);            A += _S[2*i];                        C ^= u;            C = rotateLeft(C,t);            C += _S[2*i+1];                        int temp = A;            A = B;            B = C;            C = D;            D = temp;                    }        // do pseudo-round #(ROUNDS+1) : post-whitening of A and C        A += _S[2*_noRounds+2];        C += _S[2*_noRounds+3];                    // store A, B, C and D registers to out                wordToBytes(A, out, outOff);        wordToBytes(B, out, outOff + bytesPerWord);        wordToBytes(C, out, outOff + bytesPerWord*2);        wordToBytes(D, out, outOff + bytesPerWord*3);                return 4 * bytesPerWord;    }    private int decryptBlock(        byte[]  in,        int     inOff,        byte[]  out,        int     outOff)    {        // load A,B,C and D registers from out.        int A = bytesToWord(in, inOff);        int B = bytesToWord(in, inOff + bytesPerWord);        int C = bytesToWord(in, inOff + bytesPerWord*2);        int D = bytesToWord(in, inOff + bytesPerWord*3);        // Undo pseudo-round #(ROUNDS+1) : post whitening of A and C         C -= _S[2*_noRounds+3];        A -= _S[2*_noRounds+2];                // Undo round #ROUNDS, .., #2,#1 of encryption         for (int i = _noRounds; i >= 1; i--)        {            int t=0,u = 0;                        int temp = D;            D = C;            C = B;            B = A;            A = temp;                        t = B*(2*B+1);            t = rotateLeft(t, LGW);                        u = D*(2*D+1);            u = rotateLeft(u, LGW);                        C -= _S[2*i+1];            C = rotateRight(C,t);            C ^= u;                        A -= _S[2*i];            A = rotateRight(A,u);            A ^= t;                    }        // Undo pseudo-round #0: pre-whitening of B and D        D -= _S[1];        B -= _S[0];                wordToBytes(A, out, outOff);        wordToBytes(B, out, outOff + bytesPerWord);        wordToBytes(C, out, outOff + bytesPerWord*2);        wordToBytes(D, out, outOff + bytesPerWord*3);                return 4 * bytesPerWord;    }        //////////////////////////////////////////////////////////////    //    // PRIVATE Helper Methods    //    //////////////////////////////////////////////////////////////    /**     * Perform a left "spin" of the word. The rotation of the given     * word <em>x</em> is rotated left by <em>y</em> bits.     * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>     * are used to determine the rotation amount. Here it is      * assumed that the wordsize used is 32.     * <p>     * @param  x  word to rotate     * @param  y    number of bits to rotate % wordSize     */    private int rotateLeft(int x, int y)    {        return (x << y) | (x >>> -y);    }    /**     * Perform a right "spin" of the word. The rotation of the given     * word <em>x</em> is rotated left by <em>y</em> bits.     * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>     * are used to determine the rotation amount. Here it is      * assumed that the wordsize used is a power of 2.     * <p>     * @param  x  word to rotate     * @param  y    number of bits to rotate % wordSize     */    private int rotateRight(int x, int y)    {        return (x >>> y) | (x << -y);    }    private int bytesToWord(        byte[]  src,        int     srcOff)    {        int    word = 0;        for (int i = bytesPerWord - 1; i >= 0; i--)        {            word = (word << 8) + (src[i + srcOff] & 0xff);        }        return word;    }    private void wordToBytes(        int    word,        byte[]  dst,        int     dstOff)    {        for (int i = 0; i < bytesPerWord; i++)        {            dst[i + dstOff] = (byte)word;            word >>>= 8;        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -