⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qhalf.htm

📁 Quick hull implementation
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>qhalf -- halfspace intersection about a point</title>
</head>

<body>
<!-- Navigation links -->
<p><a name="TOP"><b>Up</b></a><b>:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis 
&#149; <a href="#input">in</a>put &#149; <a href="#outputs">ou</a>tputs 
&#149; <a href="#controls">co</a>ntrols &#149; <a href="#graphics">gr</a>aphics 
&#149; <a href="#notes">no</a>tes &#149; <a href="#conventions">co</a>nventions 
&#149; <a href="#options">op</a>tions

<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/half.html"><img
src="qh--half.gif" alt="[halfspace]" align="middle" width="100"
height="100"></a>qhalf -- halfspace intersection about a point</h1>

<p>The intersection of a set of halfspaces is a polytope. The
polytope may be unbounded. See Preparata &amp; Shamos [<a
href="index.htm#pre-sha85">'85</a>] for a discussion. In low
dimensions, halfspace intersection may be used for linear
programming. </p>

<blockquote>
<dl compact>
    <dt><b>Example:</b> rbox c | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
        <a href="qh-opto.htm#n">n</a> | qhalf <a
        href="qh-optf.htm#Fp">Fp</a></dt>
    <dd>Print the intersection of the facets of a cube.  <tt>rbox c</tt> 
	generates the vertices of a cube.  <tt>qconvex FV n</tt> returns of average
	of the cube's vertices (in this case, the origin) and the halfspaces
	that define the cube.  <tt>qhalf Fp</tt> computes the intersection of
	the halfspaces about the origin.  The intersection is the vertices
	of the original cube.</dd>

    <dt><p><b>Example:</b> rbox c d G0.55 | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
        <a href="qh-opto.htm#n">n</a> | qhalf <a
        href="qh-optf.htm#Fp">Fp</a></dt>
    <dd>Print the intersection of the facets of a cube and a diamond.  There
	are 24 facets and 14 intersection points.  Four facets define each diamond
	vertext.  Six facets define each cube vertex.
	</dd>

    <dt><p><b>Example:</b> rbox c d G0.55 | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
        <a href="qh-opto.htm#n">n</a> | qhalf <a
        href="qh-optf.htm#Fp">Fp</a>
		<a href="qh-optq.htm#Qt">Qt</a></dt>
    <dd>Same as above except triangulate before computing
	the intersection points.  Three facets define each intersection 
	point.  There are two duplicates of the diamond and four duplicates of the cube.
	</dd>
</dl>
</blockquote>

<p>Qhull computes a halfspace intersection by the geometric
duality between points and halfspaces. 
See <a href="qh-eg.htm#half">halfspace examples</a>, 
<a href="#notes">qhalf notes</a>, and
option 'p' of <a href="#outputs">qhalf outputs</a>. </p>

<p>By default, halfspace intersections may be defined by more than
<i>d</i> halfspaces.  See the previous cube and diamond example.
This is the expected output for halfspace intersection.  

<p>You can try triangulated output and joggled input.  It demonstrates
that triangulated output is more accurate than joggled input.

<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output), all
halfspace intersections are simplicial (e.g., three halfspaces per 
intersection in 3-d).  In 3-d, if more than three halfspaces intersect
at the same point, triangulated output will produce 
duplicate intersections, one for each additional halfspace.  See the previous
cube and diamond example.</p>

<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), all halfspace 
intersections are simplicial.  This may lead to nearly identical
intersections.  For example, replace 'Qt' with 'QJ' above and
compare the duplicated intersections.
See <a
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>

<p>The 'qhalf' program is equivalent to 
'<a href=qhull.htm#outputs>qhull H</a>' in 2-d to 4-d, and
'<a href=qhull.htm#outputs>qhull H</a> <a href=qh-optq.htm#Qx>Qx</a>' 
in 5-d and higher.  It disables the following Qhull
<a href=qh-quick.htm#options>options</a>: <i>d n v Qbb QbB Qf Qg Qm 
Qr QR Qv Qx Qz TR E V Fa FA FC FD FS Ft FV Gt Q0,etc</i>.


<p><b>Copyright &copy; 1995-2003 The Geometry Center, Minneapolis MN</b></p>
<hr>

<h3><a href="#TOP">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -