⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qvoronoi.htm

📁 Quick hull implementation
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>qvoronoi -- Voronoi diagram</title>
</head>

<body>
<!-- Navigation links -->
<a name="TOP"><b>Up</b></a><b>:</b> 
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis 
&#149; <a href="#input">in</a>put &#149; <a href="#outputs">ou</a>tputs 
&#149; <a href="#controls">co</a>ntrols &#149; <a href="#graphics">gr</a>aphics 
&#149; <a href="#notes">no</a>tes &#149; <a href="#conventions">co</a>nventions 
&#149; <a href="#options">op</a>tions

<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
height="100"></a>qvoronoi -- Voronoi diagram</h1>

<p>The Voronoi diagram is the nearest-neighbor map for a set of
points.  Each region contains those points that are nearer
one input site than any other input site.  It has many useful properties and applications. See the
survey article by Aurenhammer [<a href="index.htm#aure91">'91</a>]
and the detailed introduction by O'Rourke [<a
href="index.htm#orou94">'94</a>]. The Voronoi diagram is the
dual of the <a href=qdelaun.htm>Delaunay triangulation</a>. </p>

<blockquote>
<dl>
    <dt><b>Example:</b> rbox 10 D3 | qvoronoi <a href="qh-opto.htm#s">s</a>
        <a href="qh-opto.htm#o">o</a> <a href="qh-optt.htm#TO">TO
        result</a></dt>
    <dd>Compute the 3-d Voronoi diagram of 10 random points. Write a
        summary to the console and the Voronoi vertices and
        regions to 'result'. The first vertex of the result
        indicates unbounded regions.</dd>

    <dt>&nbsp;</dt>
    <dt><b>Example:</b> rbox r y c G0.1 D2 | qvoronoi 
	     <a href="qh-opto.htm#s">s</a>
        <a href="qh-opto.htm#o">o</a> <a href="qh-optt.htm#TO">TO
        result</a></dt>
    <dd>Compute the 2-d Voronoi diagram of a triangle and a small
        square. Write a
        summary to the console and Voronoi vertices and regions
        to 'result'. Report a single Voronoi vertex for
        cocircular input sites. The first vertex of the result
        indicates unbounded regions. The origin is the Voronoi
        vertex for the square.</dd>

    <dt>&nbsp;</dt>
    <dt><b>Example:</b> rbox r y c G0.1 D2 | qvoronoi <a href="qh-optf.htm#Fv2">Fv</a>
        <a href="qh-optt.htm#TO">TO result</a></dt>
    <dd>Compute the 2-d Voronoi diagram of a triangle and a small
        square. Write a
        summary to the console and the Voronoi ridges to
        'result'. Each ridge is the perpendicular bisector of a
        pair of input sites. Vertex &quot;0&quot; indicates
        unbounded ridges. Vertex &quot;8&quot; is the Voronoi
        vertex for the square.</dd>

    <dt>&nbsp;</dt>
    <dt><b>Example:</b> rbox r y c G0.1 D2 | qvoronoi <a href="qh-optf.htm#Fi2">Fi</a></dt>
    <dd>Print the bounded, separating hyperplanes for the 2-d Voronoi diagram of a 
	      triangle and a small
        square.  Note the four hyperplanes (i.e., lines) for Voronoi vertex
		&quot;8&quot;.  It is at the origin.
		</dd>
</dl>
</blockquote>

<p>Qhull computes the Voronoi diagram via the <a href="qdelaun.htm">Delaunay
triangulation</a>. Each Voronoi
vertex is the circumcenter of a facet of the Delaunay
triangulation. Each Voronoi region corresponds to a vertex (i.e., input site) of the
Delaunay triangulation. </p>

<p>Qhull outputs the Voronoi vertices for each Voronoi region. With 
option '<a href="qh-optf.htm#Fv2">Fv</a>',
it lists all ridges of the Voronoi diagram with the corresponding
pairs of input sites. With 
options '<a href="qh-optf.htm#Fi2">Fi</a>' and '<a href="qh-optf.htm#Fo2">Fo</a>',
it lists the bounded and unbounded separating hyperplanes.
You can also output a single Voronoi region
for further processing [see <a href="#graphics">graphics</a>].</p>

<p>See <a href="http://www.qhull.org/html/qh-faq.htm#TOC">Qhull FAQ</a> - Delaunay and
Voronoi diagram questions.</p>

<p>Options '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output)
and '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input) may produce
unexpected results.   Cocircular and cospherical input sites will
produce duplicate or nearly duplicate Voronoi vertices.  See also <a
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>

<p>The 'qvonoroi' program is equivalent to 
'<a href=qhull.htm#outputs>qhull v</a> <a href=qh-optq.htm#Qbb>Qbb</a>' in 2-d to 3-d, and
'<a href=qhull.htm#outputs>qhull v</a> <a href=qh-optq.htm#Qbb>Qbb</a> <a href=qh-optq.htm#Qx>Qx</a>' 
in 4-d and higher.  It disables the following Qhull
<a href=qh-quick.htm#options>options</a>: <i>d n v Qbb QbB Qf Qg Qm 
Qr QR Qv Qx Qz TR E V Fa FA FC FD FS Ft FV Gt Q0,etc</i>.

<p><b>Copyright &copy; 1995-2003 The Geometry Center, Minneapolis MN</b></p>

<hr>
<h3><a href="#TOP">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -