📄 lookup.m
字号:
## Copyright (C) 2000 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
## 02110-1301, USA.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{idx} =} lookup (@var{table}, @var{y})
## Lookup values in a sorted table. Usually used as a prelude to
## interpolation.
##
## If table is strictly increasing and @code{idx = lookup (table, y)}, then
## @code{table(idx(i)) <= y(i) < table(idx(i+1))} for all @code{y(i)}
## within the table. If @code{y(i)} is before the table, then
## @code{idx(i)} is 0. If @code{y(i)} is after the table then
## @code{idx(i)} is @code{table(n)}.
##
## If the table is strictly decreasing, then the tests are reversed.
## There are no guarantees for tables which are non-monotonic or are not
## strictly monotonic.
##
## To get an index value which lies within an interval of the table,
## use:
##
## @example
## idx = lookup (table(2:length(table)-1), y) + 1
## @end example
##
## @noindent
## This expression puts values before the table into the first
## interval, and values after the table into the last interval.
## @end deftypefn
## Changed from binary search to sort.
## Thanks to Kai Habel <kai.habel@gmx.de> for the suggestion.
## TODO: sort-based lookup is significantly slower given a large table
## TODO: and small lookup vector. This shouldn't be a problem since
## TODO: interpolation (the reason for the table lookup in the first
## TODO: place) usually involves subsampling of an existing table. The
## TODO: other use of interpolation, looking up values one at a time, is
## TODO: unfortunately significantly slower for large tables.
## TODO: sort is order O((lt+lx)*log(lt+lx))
## TODO: search is order O(lx*log(lt))
## TODO: Clearly, search is asymptotically better than sort, but sort
## TODO: is compiled and search is not. Could support both, or recode
## TODO: search in C++, or assume things are good enough as they stand.
function idx = lookup (table, xi)
if (nargin == 2)
if (isempty (table))
idx = zeros (size (xi));
elseif (isvector (table))
[nr, nc] = size (xi);
lt = length (table);
if (table(1) > table(lt))
## decreasing table
[v, p] = sort ([xi(:); table(:)]);
idx(p) = cumsum (p > nr*nc);
idx = lt - idx(1:nr*nc);
else
## increasing table
[v, p] = sort ([table(:); xi(:) ]);
idx(p) = cumsum (p <= lt);
idx = idx(lt+1:lt+nr*nc);
endif
idx = reshape (idx, nr, nc);
else
error ("lookup: table must be a vector");
endif
else
print_usage ();
endif
endfunction
%!assert (lookup(1:3, 0.5), 0) # value before table
%!assert (lookup(1:3, 3.5), 3) # value after table error
%!assert (lookup(1:3, 1.5), 1) # value within table error
%!assert (lookup(1:3, [3,2,1]), [3,2,1])
%!assert (lookup([1:4]', [1.2, 3.5]'), [1, 3]');
%!assert (lookup([1:4], [1.2, 3.5]'), [1, 3]');
%!assert (lookup([1:4]', [1.2, 3.5]), [1, 3]);
%!assert (lookup([1:4], [1.2, 3.5]), [1, 3]);
%!assert (lookup(1:3, [3, 2, 1]), [3, 2, 1]);
%!assert (lookup([3:-1:1], [3.5, 3, 1.2, 2.5, 2.5]), [0, 1, 2, 1, 1])
%!assert (isempty(lookup([1:3], [])))
%!assert (isempty(lookup([1:3]', [])))
%!assert (lookup(1:3, [1, 2; 3, 0.5]), [1, 2; 3, 0]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -