⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qrdecomposition.java

📁 JAVA 数学程序库 提供常规的数值计算程序包
💻 JAVA
字号:
package jmathlib.toolbox.jmathlib.matrix._private.Jama;
//import Jama.util.*;

/** QR Decomposition.
<P>
   For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
   orthogonal matrix Q and an n-by-n upper triangular matrix R so that
   A = Q*R.
<P>
   The QR decompostion always exists, even if the matrix does not have
   full rank, so the constructor will never fail.  The primary use of the
   QR decomposition is in the least squares solution of nonsquare systems
   of simultaneous linear equations.  This will fail if isFullRank()
   returns false.
*/

/* This file is part of JAMA, which is a public domain matrix package */
/* Changes by: S.Mueller */

public class QRDecomposition implements java.io.Serializable {

/* ------------------------
   Class variables
 * ------------------------ */

   /** Array for internal storage of decomposition.
   @serial internal array storage.
   */
   private double[][] QR;

   /** Row and column dimensions.
   @serial column dimension.
   @serial row dimension.
   */
   private int m, n;

   /** Array for internal storage of diagonal of R.
   @serial diagonal of R.
   */
   private double[] Rdiag;

/* ------------------------
   Constructor
 * ------------------------ */

   public QRDecomposition (Matrix A) {
      this(A.getArrayCopy());
   }

      /** QR Decomposition, computed by Householder reflections.
   @param A    Rectangular matrix
   @return     Structure to access R and the Householder vectors and compute Q.
   */
   public QRDecomposition (double[][] A){      //Matrix A) {
      // Initialize.
      QR = A;   //A.getArrayCopy();
      m = A.length;     //A.getRowDimension();
      n = A[0].length;  //A.getColumnDimension();
      Rdiag = new double[n];

      // Main loop.
      for (int k = 0; k < n; k++) {
         // Compute 2-norm of k-th column without under/overflow.
         double nrm = 0;
         for (int i = k; i < m; i++) {
            nrm = hypot(nrm,QR[i][k]);
         }

         if (nrm != 0.0) {
            // Form k-th Householder vector.
            if (QR[k][k] < 0) {
               nrm = -nrm;
            }
            for (int i = k; i < m; i++) {
               QR[i][k] /= nrm;
            }
            QR[k][k] += 1.0;

            // Apply transformation to remaining columns.
            for (int j = k+1; j < n; j++) {
               double s = 0.0; 
               for (int i = k; i < m; i++) {
                  s += QR[i][k]*QR[i][j];
               }
               s = -s/QR[k][k];
               for (int i = k; i < m; i++) {
                  QR[i][j] += s*QR[i][k];
               }
            }
         }
         Rdiag[k] = -nrm;
      }
   }

/* ------------------------
   Public Methods
 * ------------------------ */

   /** Is the matrix full rank?
   @return     true if R, and hence A, has full rank.
   */

   public boolean isFullRank () {
      for (int j = 0; j < n; j++) {
         if (Rdiag[j] == 0)
            return false;
      }
      return true;
   }

   /** Return the Householder vectors
   @return     Lower trapezoidal matrix whose columns define the reflections
   */

   public double[][] getH () {
      //Matrix X = new Matrix(m,n);
      double[][] H = new double[m][n]; //X.getArray();
      for (int i = 0; i < m; i++) {
         for (int j = 0; j < n; j++) {
            if (i >= j) {
               H[i][j] = QR[i][j];
            } else {
               H[i][j] = 0.0;
            }
         }
      }
      return H;
   }

   /** Return the upper triangular factor
   @return     R
   */
   public double[][] getR () {
      //Matrix X = new Matrix(n,n);
      double[][] R = new double[n][n];
      for (int i = 0; i < n; i++) {
         for (int j = 0; j < n; j++) {
            if (i < j) {
               R[i][j] = QR[i][j];
            } else if (i == j) {
               R[i][j] = Rdiag[i];
            } else {
               R[i][j] = 0.0;
            }
         }
      }
      return R;
   }

   /** Generate and return the (economy-sized) orthogonal factor
   @return     Q
   */

   public double[][] getQ () {
      //Matrix X = new Matrix(m,n);
      double[][] X = new double[m][n];
      double[][] Q = X;   //X.getArray();
      for (int k = n-1; k >= 0; k--) {
         for (int i = 0; i < m; i++) {
            Q[i][k] = 0.0;
         }
         Q[k][k] = 1.0;
         for (int j = k; j < n; j++) {
            if (QR[k][k] != 0) {
               double s = 0.0;
               for (int i = k; i < m; i++) {
                  s += QR[i][k]*Q[i][j];
               }
               s = -s/QR[k][k];
               for (int i = k; i < m; i++) {
                  Q[i][j] += s*QR[i][k];
               }
            }
         }
      }
      return X;
   }

   /** Solve A*X = B
   @param  B   A Matrix with as many rows as A and any number of columns.
   @return     X so that L*U*X = B(piv,:)
   @exception  IllegalArgumentException Matrix row dimensions must agree.
   @exception  RuntimeException  Matrix is singular.
   */
   public double[][] solve (Matrix B) {
        return solve(B.getArrayCopy());
   }

   /** Least squares solution of A*X = B
   @param B    A Matrix with as many rows as A and any number of columns.
   @return     X that minimizes the two norm of Q*R*X-B.
   @exception  IllegalArgumentException  Matrix row dimensions must agree.
   @exception  RuntimeException  Matrix is rank deficient.
   */

   public double[][] solve (double[][] B) {
      if (B.length != m) {
         throw new IllegalArgumentException("Matrix row dimensions must agree.");
      }
      if (!this.isFullRank()) {
         throw new RuntimeException("Matrix is rank deficient.");
      }
      
      // Copy right hand side
      int nx = B[0].length;
      double[][] X = B;    //B.getArrayCopy();

      // Compute Y = transpose(Q)*B
      for (int k = 0; k < n; k++) {
         for (int j = 0; j < nx; j++) {
            double s = 0.0; 
            for (int i = k; i < m; i++) {
               s += QR[i][k]*X[i][j];
            }
            s = -s/QR[k][k];
            for (int i = k; i < m; i++) {
               X[i][j] += s*QR[i][k];
            }
         }
      }
      // Solve R*X = Y;
      for (int k = n-1; k >= 0; k--) {
         for (int j = 0; j < nx; j++) {
            X[k][j] /= Rdiag[k];
         }
         for (int i = 0; i < k; i++) {
            for (int j = 0; j < nx; j++) {
               X[i][j] -= X[k][j]*QR[i][k];
            }
         }
      }
      //return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1));
      return X;
   }

   public static double hypot(double a, double b) {
      double r;
      if (Math.abs(a) > Math.abs(b)) {
         r = b/a;
         r = Math.abs(a)*Math.sqrt(1+r*r);
      } else if (b != 0) {
         r = a/b;
         r = Math.abs(b)*Math.sqrt(1+r*r);
      } else {
         r = 0.0;
      }
      return r;
   }


}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -