📄 doublenumbertoken.java
字号:
if ((sizeY==0) && (sizeX==0))
return null;
for(int yy = 0; yy < sizeY; yy++)
{
for(int xx = 0; xx < sizeX; xx++)
{
int n = yx2n(yy,xx);
temp[yy][xx] = values[n][REAL];
}
}
return temp;
}
/**@return the real values of the number*/
public double[][] getReValues()
{
return getValuesRe();
}
/**@return the imaginary values of the number*/
public double[][] getValuesIm()
{
double[][] temp = new double[sizeY][sizeX];
if ((sizeY==0) && (sizeX==0))
return null;
for(int yy = 0; yy < sizeY; yy++)
{
for(int xx = 0; xx < sizeX; xx++)
{
int n = yx2n(yy,xx);
temp[yy][xx] = values[n][IMAG];
}
}
return temp;
}
/**
*
* @param n
* @return
*/
public OperandToken getElement(int n)
{
return new DoubleNumberToken(values[n][REAL], values[n][IMAG]);
}
/**
*
* @param n
* @param num
*/
public void setElement(int n, OperandToken num)
{
values[n][REAL] = ((DoubleNumberToken)num).getValueRe();
values[n][IMAG] = ((DoubleNumberToken)num).getValueIm();
}
/**@return an array of double representing the element at y,x
@param y = y position in matrix
@param x = x position in matrix*/
public double[] getValueComplex(int y, int x)
{
int n = yx2n(y,x);
return getValueComplex(n);
}
/**
*
* @param n
* @return
*/
public double[] getValueComplex(int n)
{
return values[n];
}
/**
*
* @param n
* @param _value
*/
public void setValueComplex(int n, double[] _value)
{
values[n] = _value;
}
/**Set value at position y, x
* @param y = y position in matrix
* @param x = x position in matrix
* @param _value = the value to set it to as an array of doubles
*/
public void setValueComplex(int y, int x, double[] _value)
{
int n = yx2n(y,x);
values[n][REAL] = _value[REAL];
values[n][IMAG] = _value[IMAG];
}
/** Set value at position y, x
* @param y = y position in matrix
* @param x = x position in matrix
* @param real = real value
* @param imag = imaginary value
*/
public void setValue(int y, int x, double _real, double _imag)
{
int n = yx2n(y,x);
setValue(n, _real, _imag);
}
/**
*
* @param n
* @param _real
* @param _imag
*/
public void setValue(int n, double _real, double _imag)
{
values[n][REAL] = _real;
values[n][IMAG] = _imag;
}
/**
*
* @param index multidimensional index
* @param _real
* @param _imag
*/
public void setValue(int[] index, double _real, double _imag)
{
int n = index2n(index);
setValue(n, _real, _imag);
}
/**return the number as a string*/
public String toString()
{
String result = null;
if((sizeY == 0) && (sizeX == 0))
{
// e.g. a=null;
result = "[]";
}
else if((sizeY == 1) && (sizeX == 1) && sizeA.length==2)
{
// e.g. a=555;
result = toString(values[0]);
}
else if (sizeA.length ==2)
{
result = toString2d(new int[]{sizeY,sizeX});
}
else
{
// e.g. a=[1,2,3;4,5,6] or multidimensional
int[] dim = new int[sizeA.length];
dim[0] = sizeY;
dim[1] = sizeX;
String s = toString(dim, sizeA.length-1);
result = new String(s);
}
return result;
}
private String toString(int[] dim, int i)
{
String ret="";
if (i>=2)
{
// e.g. at least 3rd dimension
// e.g. a(5,3,4,x,3,1)
for (int n=0; n<sizeA[i]; n++)
{
dim[i]=n;
// e.g. a(5,3,Y,x,3,1)
ret += toString(dim, i-1);
}
}
else
{
// e.g.
ret += "(:,:";
for (int k=2; k<dim.length; k++)
{
ret += "," + (dim[k]+1); //NOTE: conversion from internal to external index
}
ret += ") = \n";
ret += toString2d(dim);
ret += "\n";
}
return ret;
}
private String toString2d(int[] nn)
{
StringBuffer buffer = new StringBuffer(20);
for(int yy = 0; yy < sizeA[0]; yy++)
{
buffer.append(" [");
for(int xx = 0; xx < sizeA[1]; xx++)
{
nn[0] = yy;
nn[1] = xx;
int n = index2n(nn);
//ErrorLogger.debugLine(" NToken: "+index2n(nn));
buffer.append(toString(values[n]));
if(xx < sizeX - 1)
buffer.append(" , ");
}
buffer.append("]\n");
}
return buffer.toString();
}
/** create string representation of (complex) double values
@param _values[]={REAL,IMAG} real and imaginary part of number*/
public String toString(double _values[])
{
if (_values==null)
return "XXXXXX";
double re = _values[REAL];
double im = _values[IMAG];
StringBuffer result = new StringBuffer();
if((im != 0.0) || Double.isNaN(im))
result.append("(");
// real part of number
// +/- infinity, not a number, number
if (re == Double.POSITIVE_INFINITY)
result.append("Inf");
else if (re == Double.NEGATIVE_INFINITY)
result.append("-Inf");
else if (Double.isNaN(re))
result.append("NaN");
else
result.append(numFormat.format(re));
// imaginary part of number
if((im != 0.0) || Double.isNaN(im))
{
if ((re!=0.0) && !(im<0))
result.append("+");
// +/- infinity, not a number, number
if (im == Double.POSITIVE_INFINITY)
result.append("Inf");
else if (im == Double.NEGATIVE_INFINITY)
result.append("-Inf");
else if (Double.isNaN(im))
result.append("NaN");
else
result.append(numFormat.format(im));
result.append("i)");
}
return result.toString();
}
/**Evaluate the token. This causes it to return itself*/
//public OperandToken evaluate(Token[] operands)
//{
// return this;
//}
/**Check if two tokens are equal
@param arg = the object to check against*/
public boolean equals(Object arg)
{
if(arg instanceof DoubleNumberToken)
{
DoubleNumberToken nArg = (DoubleNumberToken)arg;
if(sizeX == nArg.getSizeX() && sizeY == nArg.getSizeY())
{
boolean equal = true;
for (int yy=0; yy<sizeY && equal; yy++)
{
for (int xx=0; xx<sizeX && equal; xx++)
{
int n = yx2n(yy,xx);
if((values[n][REAL] - nArg.getValueRe(n) != 0) ||
(values[n][IMAG] - nArg.getValueIm(n) != 0) )
equal = false;
}
}
return equal;
}
return false;
}
return false;
}
/**calculate the arg of the complex number at y, x*/
public double arg(int y, int x)
{
int n = yx2n(y,x);
return Math.atan2(values[n][REAL], values[n][IMAG]);
}
///////////////////////standard operators///////////////////
////////////////////////////////////////////////////////////
/**add arg to this object for a number token
@param = the value to add to it
@return the result as an OperandToken*/
public OperandToken add(OperandToken arg)
{
if(arg instanceof DoubleNumberToken)
{
DoubleNumberToken nArg = ((DoubleNumberToken)arg);
// Check dimensions of matrices
if(checkEqualDimensions(sizeA, nArg.sizeA))
{
// Add (n*m) + (n*m) or
// same dimensions (n,m,r)==(n,m,r)
ErrorLogger.debugLine("DoubleNumberToken: add (n*m) + (n*m)");
DoubleNumberToken result = new DoubleNumberToken(sizeA, null, null);
for(int n = 0; n < noElem; n++)
{
double real = getValueRe(n) + nArg.getValueRe(n);
double imag = getValueIm(n) + nArg.getValueIm(n);
result.setValue(n, real, imag);
}
//ErrorLogger.debugLine("end DoubleNumberToken: add (n*m) + (n*m)");
return result;
}
else if(isScalar())
{
// 1 + [3,4,5]
ErrorLogger.debugLine("DoubleNumberToken: add (1*1) + (n*m)");
DoubleNumberToken result = new DoubleNumberToken(nArg.sizeA, null, null);
for(int n = 0; n < nArg.getNumberOfElements(); n++)
{
double realval = getValueRe() + nArg.getValueRe(n);
double imaginaryval = getValueIm() + nArg.getValueIm(n);
result.setValue(n, realval, imaginaryval);
}
//ErrorLogger.debugLine("end DoubleNumberToken: add (n*m) + (n*m)");
return result;
}
else if(nArg.isScalar())
{
// [3,4,5] +1
ErrorLogger.debugLine("DoubleNumberToken: add (n,m) + (1,1)");
DoubleNumberToken result = new DoubleNumberToken(sizeA, null, null);
for(int n = 0; n < noElem; n++)
{
double realval = getValueRe(n) + nArg.getValueRe();
double imaginaryval = getValueIm(n) + nArg.getValueIm();
result.setValue(n, realval, imaginaryval);
}
//ErrorLogger.debugLine("end DoubleNumberToken: add (n*m) + (n*m)");
return result;
}
else
{
/* Matrices have unequal size: (n*m) != (o*p) */
Errors.throwMathLibException("DoubleNumberToken: add matrices of unequal size");
return null;
}
}
else if(arg instanceof Int8NumberToken)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -