📄 classarr.h
字号:
#if !defined(__ClassArr_H__)
#define __ClassArr_H__
#include <assert.h>
#include <memory.h>
#include <new.h> //only supports Win32 and Mac
template<class TYPE, class ARG_TYPE>
class CClassArray
{
public:
// Construction & destruction
CClassArray() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; }
~CClassArray();
// Attributes
int GetSize() const { return m_nSize; }
int GetUpperBound() const { return m_nSize-1; }
void SetSize(int nNewSize, int nGrowBy = -1);
// Operations
// Clean up
void FreeExtra();
void RemoveAll() { SetSize(0, -1); }
// Accessing elements
TYPE GetAt(int nIndex) const { assert(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; }
void SetAt(int nIndex, ARG_TYPE newElement) { assert(nIndex >= 0 && nIndex < m_nSize); m_pData[nIndex] = newElement; }
TYPE& ElementAt(int nIndex) { assert(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; }
// Direct Access to the element data (may return NULL)
const TYPE* GetData() const { return (const TYPE*)m_pData; }
TYPE* GetData() { return (TYPE*)m_pData; }
// Potentially growing the array
void SetAtGrow(int nIndex, ARG_TYPE newElement);
int Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; }
int Append(const CClassArray& src);
void Copy(const CClassArray& src);
// overloaded operator helpers
TYPE operator[](int nIndex) const { return GetAt(nIndex); }
TYPE& operator[](int nIndex) { return ElementAt(nIndex); }
// Operations that move elements around
void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1);
void RemoveAt(int nIndex, int nCount = 1);
void InsertAt(int nStartIndex, CClassArray* pNewArray);
// Implementation
protected:
void ConstructElements(TYPE* pElements, int nCount);
void DestructElements(TYPE* pElements, int nCount);
void CopyElements(TYPE* pDest, const TYPE* pSrc, int nCount);
TYPE* m_pData; // the actual array of data
int m_nSize; // # of elements (upperBound - 1)
int m_nMaxSize; // max allocated
int m_nGrowBy; // grow amount
};
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE>
CClassArray<TYPE, ARG_TYPE>::~CClassArray()
{
if (m_pData != NULL)
{
DestructElements(m_pData, m_nSize);
delete[] (char*)m_pData;
}
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy)
{
assert(nNewSize >= 0);
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
if (m_pData != NULL)
{
DestructElements(m_pData, m_nSize);
delete[] (char*)m_pData;
m_pData = NULL;
}
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
assert(nNewSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
m_pData = (TYPE*) new char[nNewSize * sizeof(TYPE)];
ConstructElements(m_pData, nNewSize);
m_nSize = m_nMaxSize = nNewSize;
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
ConstructElements(&m_pData[m_nSize], nNewSize-m_nSize);
}
else if (m_nSize > nNewSize)
{
// destroy the old elements
DestructElements(&m_pData[nNewSize], m_nSize-nNewSize);
}
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = m_nSize / 8;
nGrowBy = (nGrowBy < 4) ? 4 : ((nGrowBy > 1024) ? 1024 : nGrowBy);
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
assert(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
assert(nNewMax <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = (TYPE*) new char[nNewMax * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// construct remaining elements
assert(nNewSize > m_nSize);
ConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (char*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
template<class TYPE, class ARG_TYPE>
int CClassArray<TYPE, ARG_TYPE>::Append(const CClassArray& src)
{
assert(this != &src); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
CopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize);
return nOldSize;
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::Copy(const CClassArray& src)
{
assert(this != &src); // cannot append to itself
SetSize(src.m_nSize);
CopyElements(m_pData, src.m_pData, src.m_nSize);
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::FreeExtra()
{
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
assert(m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (TYPE*) new char[m_nSize * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
}
// get rid of old stuff (note: no destructors called)
delete[] (char*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement)
{
assert(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1, -1);
m_pData[nIndex] = newElement;
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/)
{
assert(nIndex >= 0); // will expand to meet need
assert(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount, -1); // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize;
SetSize(m_nSize + nCount, -1); // grow it to new size
// destroy intial data before copying over it
DestructElements(&m_pData[nOldSize], nCount);
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(TYPE));
// re-init slots we copied from
ConstructElements(&m_pData[nIndex], nCount);
}
// insert new value in the gap
assert(nIndex + nCount <= m_nSize);
while (nCount--)
m_pData[nIndex++] = newElement;
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::RemoveAt(int nIndex, int nCount)
{
assert(nIndex >= 0);
assert(nCount >= 0);
assert(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
DestructElements(&m_pData[nIndex], nCount);
if (nMoveCount)
memmove(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(TYPE));
m_nSize -= nCount;
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::InsertAt(int nStartIndex, CClassArray* pNewArray)
{
assert(pNewArray != NULL);
assert(nStartIndex >= 0);
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize());
for (int i = 0; i < pNewArray->GetSize(); i++)
SetAt(nStartIndex + i, pNewArray->GetAt(i));
}
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::ConstructElements(TYPE* pElements, int nCount)
{
// first do bit-wise zero initialization
memset((void*)pElements, 0, nCount * sizeof(TYPE));
// then call the constructor(s)
for (; nCount--; pElements++)
::new((void*)pElements) TYPE;
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::DestructElements(TYPE* pElements, int nCount)
{
// call the destructor(s)
for (; nCount--; pElements++)
pElements->~TYPE();
}
template<class TYPE, class ARG_TYPE>
void CClassArray<TYPE, ARG_TYPE>::CopyElements(TYPE* pDest, const TYPE* pSrc, int nCount)
{
// default is element-copy using assignment
while (nCount--)
*pDest++ = *pSrc++;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -