📄 lunopivvec.m
字号:
function [L,U] = luNopivVec(A,ptol)
% luNopivVec LU factorization without pivoting - vectorized implementation
% Row operations to compute submatrix A(i+1:n,i+1:n) resulting
% from elimination of partial column A(i:1:n,i) are performed
% as block matrix operation
%
% Synopsis: [L,U] = luNopivVec(A)
% [L,U] = luNopivVec(A,ptol)
%
% Input: A = coefficient matrix
% ptol = (optional) tolerance for detection of zero pivot
% Default: ptol = 50*eps
%
% Output: L,U = lower triangular matrix, L, and upper triangular
% matrix, U, such that A = L*U
if nargin<2, ptol = 50*eps; end
[m,n] = size(A);
if m~=n, error('A matrix needs to be square'); end
for i = 1:n-1 % loop over pivot rows
pivot = A(i,i);
if abs(pivot)<ptol, error('zero pivot encountered'); end
A(i+1:n,i) = A(i+1:n,i)/pivot; % partial column of multipliers
A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - ... % row ops to eliminate A(i+1:n,i)
A(i+1:n,i)*A(i,i+1:n); % implemented as outer product update
end
L = eye(size(A)) + tril(A,-1); % extract L and U
U = triu(A);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -