⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 f34x_usb_main.c

📁 学习usb编程很好的例子 自己学习用的。
💻 C
字号:
//-----------------------------------------------------------------------------
// F34x_USB_Main.c
//-----------------------------------------------------------------------------
// Copyright 2005 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This application note covers the implementation of a simple USB application 
// using the interrupt transfer type. This includes support for device
// enumeration, control and interrupt transactions, and definitions of 
// descriptor data. The purpose of this software is to give a simple working 
// example of an interrupt transfer application; it does not include
// support for multiple configurations or other transfer types.
//
// How To Test:    See Readme.txt
//
//
// FID:            34X000019
// Target:         C8051F34x
// Tool chain:     Keil C51 7.50 / Keil EVAL C51
//                 Silicon Laboratories IDE version 2.6
// Command Line:   See Readme.txt
// Project Name:   F34x_USB_Interrupt
//
//
// Release 1.0
//    -Initial Revision (GP)
//    -22 NOV 2005
//    -Ported from 'F320_USB_Bulk
//

//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------

#include <c8051f340.h>
#include "F34x_USB_Register.h"
#include "F34x_USB_Main.h"
#include "F34x_USB_Descriptor.h"

//-----------------------------------------------------------------------------
// 16-bit SFR Definitions for 'F32x
//-----------------------------------------------------------------------------

sfr16 TMR2RL   = 0xca;                 // Timer2 reload value
sfr16 TMR2     = 0xcc;                 // Timer2 counter

//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------

sbit Led1 = P2^2;                      // LED='1' means ON
sbit Led2 = P2^3;

#define Sw1 0x01                       // These are the port2 bits for Sw1
#define Sw2 0x02                       // and Sw2 on the development board
BYTE Switch1State = 0;                 // Indicate status of switch
BYTE Switch2State = 0;                 // starting at 0 == off

BYTE Toggle1 = 0;                      // Variable to make sure each button
BYTE Toggle2 = 0;                      // press and release toggles switch

BYTE Potentiometer = 0x00;             // Last read potentiometer value
BYTE Temperature = 0x00;               // Last read temperature sensor value

idata BYTE Out_Packet[64];             // Last packet received from host
idata BYTE In_Packet[64];              // Next packet to sent to host

code const BYTE TEMP_ADD = 112;        // This constant is added to Temperature


//-----------------------------------------------------------------------------
// Main Routine
//-----------------------------------------------------------------------------
void main(void)
{
   PCA0MD &= ~0x40;                    // Disable Watchdog timer

   OSCILLATOR_Init();                  // Initialize oscillator
   PORT_Init();                        // Initialize crossbar and GPIO
   USB0_Init();                        // Initialize USB0
   Timer2_Init();                      // Initialize Timer2
   ADC0_Init();                        // Initialize ADC0

   while (1)
   {
    // It is possible that the contents of the following packets can change
    // while being updated.  This doesn't cause a problem in the sample
    // application because the bytes are all independent.  If data is NOT
    // independent, packet update routines should be moved to an interrupt
    // service routine, or interrupts should be disabled during data updates.

      if (Out_Packet[0] == 1) Led1 = 1;   // Update status of LED #1
      else Led1 = 0;
      if (Out_Packet[1] == 1) Led2 = 1;   // Update status of LED #2
      else Led2 = 0;
      P1 = (Out_Packet[2] & 0x0F);        // Set Port 1 pins


      In_Packet[0] = Switch1State;        // Send status of switch 1
      In_Packet[1] = Switch2State;        // and switch 2 to host
      In_Packet[2] = (P0 & 0x0F);         // Port 0 [0-3]
      In_Packet[3] = Potentiometer;       // Potentiometer value
      In_Packet[4] = Temperature;         // Temperature sensor value
   }
}

//-----------------------------------------------------------------------------
// Initialization Subroutines
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
// OSCILLATOR_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters   : None
//
// Initialize the system clock and USB clock
//
//-----------------------------------------------------------------------------
void OSCILLATOR_Init(void)
{
#ifdef _USB_LOW_SPEED_

   OSCICN |= 0x03;                     // Configure internal oscillator for
                                       // its maximum frequency and enable
                                       // missing clock detector

   CLKSEL  = SYS_INT_OSC;              // Select System clock
   CLKSEL |= USB_INT_OSC_DIV_2;        // Select USB clock
#else
   OSCICN |= 0x03;                     // Configure internal oscillator for
                                       // its maximum frequency and enable
                                       // missing clock detector

   CLKMUL  = 0x00;                     // Select internal oscillator as
                                       // input to clock multiplier

   CLKMUL |= 0x80;                     // Enable clock multiplier
   Delay();                            // Delay for clock multiplier to begin
   CLKMUL |= 0xC0;                     // Initialize the clock multiplier
   Delay();                            // Delay for clock multiplier to begin

   while(!(CLKMUL & 0x20));            // Wait for multiplier to lock
   CLKSEL  = SYS_INT_OSC;              // Select system clock
   CLKSEL |= USB_4X_CLOCK;             // Select USB clock
#endif  /* _USB_LOW_SPEED_ */
}

//-----------------------------------------------------------------------------
// PORT_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters   : None
//
// This function configures the crossbar and GPIO ports.
//
// P2.2   digital   push-pull     LED
// P2.3   digital   push-pull     LED
// P2.5   analog                  Potentiometer
//-----------------------------------------------------------------------------
void PORT_Init(void)
{
   P2MDIN   = 0xDF;                    // P2.5 set as analog input

   P0MDOUT |= 0x0F;                    // P0 pins 0-3 set high impedance
   P1MDOUT |= 0x0F;                    // P1 pins 0-3 set high impedance
   P2MDOUT |= 0x0C;                    // P2 pins 0,1 set high impedance

   P2SKIP   = 0x20;                    // P2.5 skipped by crossbar

   XBR0     = 0x00;
   XBR1     = 0x40;                    // Enable Crossbar
}

//-----------------------------------------------------------------------------
// USB0_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters   : None
// 
// - Initialize USB0
// - Enable USB0 interrupts
// - Enable USB0 transceiver
// - Enable USB0 with suspend detection
//-----------------------------------------------------------------------------
void USB0_Init(void)
{
   BYTE Count;

   // Set initial values of In_Packet and Out_Packet to zero
   // Initialize here as opposed to above main() to prevent WDT reset
   for (Count = 0; Count < 64; Count++)
   {
      Out_Packet[Count] = 0;
      In_Packet[Count] = 0;
   }

   POLL_WRITE_BYTE(POWER,  0x08);      // Force Asynchronous USB Reset
   POLL_WRITE_BYTE(IN1IE,  0x07);      // Enable Endpoint 0-2 in interrupts
   POLL_WRITE_BYTE(OUT1IE, 0x07);      // Enable Endpoint 0-2 out interrupts
   POLL_WRITE_BYTE(CMIE,   0x07);      // Enable Reset,Resume,Suspend interrupts
#ifdef _USB_LOW_SPEED_
   USB0XCN = 0xC0;                     // Enable transceiver; select low speed
   POLL_WRITE_BYTE(CLKREC, 0xA0);      // Enable clock recovery; single-step mode
                                       // disabled; low speed mode enabled
#else
   USB0XCN = 0xE0;                     // Enable transceiver; select full speed
   POLL_WRITE_BYTE(CLKREC, 0x80);      // Enable clock recovery, single-step mode
                                       // disabled
#endif // _USB_LOW_SPEED_

   EIE1 |= 0x02;                       // Enable USB0 Interrupts
   EA = 1;                             // Global Interrupt enable
                                       // Enable USB0 by clearing the USB 
                                       // Inhibit bit
   POLL_WRITE_BYTE(POWER,  0x01);      // and enable suspend detection
}

//-----------------------------------------------------------------------------
// Timer2_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters   : None
// 
// Timer 2 reload, used to check if switch pressed on overflow and
// used for ADC continuous conversion
//-----------------------------------------------------------------------------

void Timer2_Init(void)
{
   TMR2CN  = 0x00;                     // Stop Timer2; Clear TF2;

   CKCON  &= ~0xF0;                    // Timer2 clocked based on T2XCLK;
   TMR2RL  = 0;                        // Initialize reload value
   TMR2    = 0xffff;                   // Set to reload immediately

   ET2     = 1;                        // Enable Timer2 interrupts
   TR2     = 1;                        // Start Timer2
}

//-----------------------------------------------------------------------------
// ADC0_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters   : None
// 
// Configures ADC for single ended continuous conversion or Timer2
//-----------------------------------------------------------------------------

void ADC0_Init(void)
{
   REF0CN  = 0x0E;                     // Enable voltage reference VREF
   AMX0P = 0x1E;                       // Positive input starts as temp sensor
   AMX0N = 0x1F;                       // Single ended mode(neginput = gnd)

   ADC0CF  = 0xF8;                     // SAR Period 0x1F, Right adjusted

   ADC0CN  = 0xC2;                     // Continuous converion on timer 2 
                                       // overflow; low power tracking mode on

   EIE1   |= 0x08;                     // Enable conversion complete interrupt
}

//-----------------------------------------------------------------------------
// Timer2_ISR
//-----------------------------------------------------------------------------
//
// Called when timer 2 overflows, check to see if switch is pressed,
// then watch for release.
//
//-----------------------------------------------------------------------------

void Timer2_ISR(void) interrupt 5
{
   if (!(P2 & Sw1))                    // Check for switch #1 pressed
   {
      if (Toggle1 == 0)                // Toggle is used to debounce switch
      {                                // so that one press and release will
         Switch1State = ~Switch1State; // toggle the state of the switch sent
         Toggle1 = 1;                  // to the host
      }
   }
   else Toggle1 = 0;                   // Reset toggle variable

   if (!(P2 & Sw2))                    // Same as above, but Switch2
   {
      if (Toggle2 == 0)
      {
         Switch2State = ~Switch2State;
         Toggle2 = 1;
      }
   }
   else Toggle2 = 0;

   TF2H = 0;                           // Clear Timer2 interrupt flag
}

//-----------------------------------------------------------------------------
// ADC0_ConvComplete_ISR
//-----------------------------------------------------------------------------
//
// Called after a conversion of the ADC has finished
// Updates the appropriate variable for potentiometer or temperature sensor
// Switches the ADC multiplexor value to switch between the potentiometer 
// and temp sensor
//
//-----------------------------------------------------------------------------

void ADC0_ConvComplete_ISR(void) interrupt 10
{
   if (AMX0P == 0x1E)                  // This switches the AMUX between
   {                                   // the temperature sensor and the
      Temperature   = ADC0L;           // potentiometer pin after conversion
      Temperature  += TEMP_ADD;        // Add offset to Temperature
      AMX0P       = 0x04;              // switch to potentiometer
      ADC0CF      = 0xFC;              // Place ADC0 in left-adjusted mode
   }
   else
   {
      Potentiometer = ADC0H;
      AMX0P       = 0x1E;              // switch to temperature sensor
      ADC0CF      = 0xF8;              // place ADC0 in right-adjusted mode
   }

   AD0INT = 0;
}

//-----------------------------------------------------------------------------
// Delay
//-----------------------------------------------------------------------------
//
// Used for a small pause, approximately 80 us in Full Speed,
// and 1 ms when clock is configured for Low Speed
//
//-----------------------------------------------------------------------------

void Delay(void)
{
   int x;
   for(x = 0;x < 500;x)
      x++;
}

//-----------------------------------------------------------------------------
// End Of File
//-----------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -