📄 rake.m
字号:
Numusers=1;
Nc=16; %Spreading factor
ISI_Length=1; %Each time delay is ISI_Length/2
EbN0db = [0:2:10];
Tlen=5000;%Data length
Bit_Error_Number1=0;%Bit Error rate initial value
Bit_Error_Number2=0;
Bit_Error_Number3=0;
power_unitary_factor1=sqrt(5/9);%unitary power factor
power_unitary_factor2=sqrt(3/9);
power_unitary_factor3=sqrt(1/9);
s_initial=randsrc(1,Tlen);%initial data to be transmitted
%Walsh code generator matrix
Wal2=[1 1;1 -1];
Wal4=[Wal2 Wal2;Wal2 Wal2*(-1)];
Wal8=[Wal4 Wal4;Wal4 Wal4*(-1)];
Wal16=[Wal8 Wal8;Wal8 Wal8*(-1)];
%Frequency spreading
s_spread=zeros(Numusers,Tlen*Nc);
ray1=zeros(Numusers,2*Tlen*Nc);
ray2=zeros(Numusers,2*Tlen*Nc);
ray3=zeros(Numusers,2*Tlen*Nc);
for i=1:Numusers
x0=s_initial(i,:).'*Wal16(8,:);
x1=x0.';
s_Spread(i,:)=(x1(:)).';
end
%Multipath rays
ray1(1:2:2*Tlen*Nc-1)=s_Spread(1:Tlen*Nc);
ray1(2:2:2*Tlen*Nc)=ray1(1:2:2*Tlen*Nc-1);
ray2(ISI_Length+1:2*Tlen*Nc)=ray1(1:2*Tlen*Nc-ISI_Length);
ray3(2*ISI_Length+1:2*Tlen*Nc)=ray1(1:2*Tlen*Nc-2*ISI_Length);
for nEN = 1:length(EbN0db)
en = 10^(EbN0db(nEN)/10); % convert Eb/N0 from unit db to normal numbers
sigma = sqrt((32/(2*en)));
%Received siganl demp
demp=power_unitary_factor1*ray1+power_unitary_factor2*ray2+power_unitary_factor3*ray3+(randn(1,2*Tlen*Nc)+randn(1,2*Tlen*Nc)*i)*sigma;
dt=reshape(demp,32,Tlen)';
%Repeating the walsh code twice
Wal16_d(1:2:31)=Wal16(8,1:16);
Wal16_d(2:2:32)=Wal16(8,1:16);
%After despreading, first multipath output
rdata1=dt*Wal16_d(1,:).';
Wal16_delay1(1,2:32)=Wal16_d(1,1:31);
%After despreading, second multipath output
rdata2=dt*Wal16_delay1(1,:).';
Wal16_delay2(1,3:32)=Wal16_d(1,1:30);
Wal16_delay2(1,1:2)=Wal16_d(1,31:32);
%After despreading, third multipath output
rdata3=dt*Wal16_delay2(1,:).';
p1=rdata1'*rdata1;
p2=rdata2'*rdata2;
p3=rdata3'*rdata3;
p=p1+p2+p3;
u1=p1/p;
u2=p2/p;
u3=p3/p;
%Maximum ratio combining
rd_m1=real(rdata1*u1+rdata2*u2+rdata3*u3);
%Equal gain combining
rd_m2=(real(rdata1+rdata2+rdata3))/3;
%Choice type combining(strongest multipath chosing)
u=[u1,u2,u3];
maxu=max(u);
if(maxu==u1)
rd_m3=real(rdata1);
else if(maxu==u2)
rd_m3=real(rdata2);
else rd_m3=real(rdata3);
end
end
%Data decision output for the three combining techniques
r_Data1=sign(rd_m1)';
r_Data2=sign(rd_m2)';
r_Data3=sign(rd_m3)';
%Calculation of Bit error rate
Bit_Error_Number1=length(find(r_Data1(1:Tlen)~=s_initial(1:Tlen)));
Bit_Error_Rate1(nEN)=Bit_Error_Number1/(Tlen);
Bit_Error_Number2=length(find(r_Data2(1:Tlen)~=s_initial(1:Tlen)));
Bit_Error_Rate2(nEN)=Bit_Error_Number2/(Tlen);
Bit_Error_Number3=length(find(r_Data3(1:Tlen)~=s_initial(1:Tlen)));
Bit_Error_Rate3(nEN)=Bit_Error_Number3/(Tlen);
end
disp('Bit error rate for Maximum ratio combining')
disp(Bit_Error_Rate1(nEN))
disp('Bit error rate for Equal gain combining')
disp(Bit_Error_Rate2(nEN))
disp('Bit error rate for strongest multipath combining')
disp(Bit_Error_Rate3(nEN))
semilogy(EbN0db,Bit_Error_Rate1,'*-');hold on;
semilogy(EbN0db,Bit_Error_Rate2,'o-'); hold on;
semilogy(EbN0db,Bit_Error_Rate3,'+-');
legend('Maximum ratio combining','Equal gain combining','strongest multipath combining');
xlabel('Signal-to-noise ratio ');
ylabel('Bit error rate');
title('3 types of combining techniques performance comparison');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -