📄 spherercs.m
字号:
% calculate and plot RCS of a perfectly conducting sphere using
% Eq.(2.XXXXX) and produce plots similar to Figures (2.XXXX) and (2.XXXXX)
% Spherical Bessel functions are computed using series approximation
% and recursion.
clear all
eps = 0.00001;
index = 0;
% ka limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
index = index + 1;
sphere_rcs = 0. + 0.*i;
f1 = 0. + 1.*i;
f2 = 1. + 0.*i;
m = 1.;
n = 0.;
q = -1.;
% initially set del to huge value
del =100000+100000*i;
while(abs(del) > eps)
q = -q;
n = n + 1;
m = m + 2;
del = (2.*n-1) * f2 / kr-f1;
f1 = f2;
f2 = del;
del = q * m /(f2 * (kr * f1 - n * f2));
sphere_rcs = sphere_rcs + del;
end
sphere_rcsdb(index) = 20. * log10(abs(sphere_rcs));
rcs(index) = abs(sphere_rcs);
end
figure(1);
n=0.05:.05:15;
plot(n,rcs);
set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel('Sphere circumference in wavelengths');
ylabel('Normalized sphere RCS');
grid;
figure(2);
plot(n,sphere_rcsdb);
set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel('Sphere circumference in wavelengths');
ylabel('Normalized sphere RCS - dB');
grid;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -