📄 vj.c
字号:
/* * Routines to compress and uncompess tcp packets (for transmission * over low speed serial lines. * * Copyright (c) 1989 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the University of California, Berkeley. The name of the * University may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * Van Jacobson (van@helios.ee.lbl.gov), Dec 31, 1989: * - Initial distribution. * * Modified June 1993 by Paul Mackerras, paulus@cs.anu.edu.au, * so that the entire packet being decompressed doesn't have * to be in contiguous memory (just the compressed header). * * Modified March 1998 by Guy Lancaster, glanca@gesn.com, * for a 16 bit processor. */#include <string.h>#include "ppp.h"#include "vj.h"#include "pppdebug.h"#if VJ_SUPPORT > 0#if LINK_STATS#define INCR(counter) ++comp->stats.counter#else#define INCR(counter)#endif#if defined(NO_CHAR_BITFIELDS)#define getip_hl(base) ((base).ip_hl_v&0xf)#define getth_off(base) (((base).th_x2_off&0xf0)>>4)#else#define getip_hl(base) ((base).ip_hl)#define getth_off(base) ((base).th_off)#endifvoid vj_compress_init(struct vjcompress *comp){ register u_int i; register struct cstate *tstate = comp->tstate; #if MAX_SLOTS == 0 memset((char *)comp, 0, sizeof(*comp));#endif comp->maxSlotIndex = MAX_SLOTS - 1; comp->compressSlot = 0; /* Disable slot ID compression by default. */ for (i = MAX_SLOTS - 1; i > 0; --i) { tstate[i].cs_id = i; tstate[i].cs_next = &tstate[i - 1]; } tstate[0].cs_next = &tstate[MAX_SLOTS - 1]; tstate[0].cs_id = 0; comp->last_cs = &tstate[0]; comp->last_recv = 255; comp->last_xmit = 255; comp->flags = VJF_TOSS;}/* ENCODE encodes a number that is known to be non-zero. ENCODEZ * checks for zero (since zero has to be encoded in the long, 3 byte * form). */#define ENCODE(n) { \ if ((u_short)(n) >= 256) { \ *cp++ = 0; \ cp[1] = (n); \ cp[0] = (n) >> 8; \ cp += 2; \ } else { \ *cp++ = (n); \ } \}#define ENCODEZ(n) { \ if ((u_short)(n) >= 256 || (u_short)(n) == 0) { \ *cp++ = 0; \ cp[1] = (n); \ cp[0] = (n) >> 8; \ cp += 2; \ } else { \ *cp++ = (n); \ } \}#define DECODEL(f) { \ if (*cp == 0) {\ u32_t tmp = ntohl(f) + ((cp[1] << 8) | cp[2]); \ (f) = htonl(tmp); \ cp += 3; \ } else { \ u32_t tmp = ntohl(f) + (u32_t)*cp++; \ (f) = htonl(tmp); \ } \}#define DECODES(f) { \ if (*cp == 0) {\ u_short tmp = ntohs(f) + (((u_short)cp[1] << 8) | cp[2]); \ (f) = htons(tmp); \ cp += 3; \ } else { \ u_short tmp = ntohs(f) + (u_short)*cp++; \ (f) = htons(tmp); \ } \}#define DECODEU(f) { \ if (*cp == 0) {\ (f) = htons(((u_short)cp[1] << 8) | cp[2]); \ cp += 3; \ } else { \ (f) = htons((u_short)*cp++); \ } \}/* * vj_compress_tcp - Attempt to do Van Jacobsen header compression on a * packet. This assumes that nb and comp are not null and that the first * buffer of the chain contains a valid IP header. * Return the VJ type code indicating whether or not the packet was * compressed. */u_int vj_compress_tcp( struct vjcompress *comp, struct pbuf *pb){ register struct ip *ip = (struct ip *)pb->payload; register struct cstate *cs = comp->last_cs->cs_next; register u_short hlen = getip_hl(*ip); register struct tcphdr *oth; register struct tcphdr *th; register u_short deltaS, deltaA; register u_long deltaL; register u_int changes = 0; u_char new_seq[16]; register u_char *cp = new_seq; /* * Check that the packet is IP proto TCP. */ if (ip->ip_p != IPPROTO_TCP) return (TYPE_IP); /* * Bail if this is an IP fragment or if the TCP packet isn't * `compressible' (i.e., ACK isn't set or some other control bit is * set). */ if ((ip->ip_off & htons(0x3fff)) || pb->tot_len < 40) return (TYPE_IP); th = (struct tcphdr *)&((long *)ip)[hlen]; if ((th->th_flags & (TCP_SYN|TCP_FIN|TCP_RST|TCP_ACK)) != TCP_ACK) return (TYPE_IP); /* * Packet is compressible -- we're going to send either a * COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way we need * to locate (or create) the connection state. Special case the * most recently used connection since it's most likely to be used * again & we don't have to do any reordering if it's used. */ INCR(vjs_packets); if (ip->ip_src.s_addr != cs->cs_ip.ip_src.s_addr || ip->ip_dst.s_addr != cs->cs_ip.ip_dst.s_addr || *(long *)th != ((long *)&cs->cs_ip)[getip_hl(cs->cs_ip)]) { /* * Wasn't the first -- search for it. * * States are kept in a circularly linked list with * last_cs pointing to the end of the list. The * list is kept in lru order by moving a state to the * head of the list whenever it is referenced. Since * the list is short and, empirically, the connection * we want is almost always near the front, we locate * states via linear search. If we don't find a state * for the datagram, the oldest state is (re-)used. */ register struct cstate *lcs; register struct cstate *lastcs = comp->last_cs; do { lcs = cs; cs = cs->cs_next; INCR(vjs_searches); if (ip->ip_src.s_addr == cs->cs_ip.ip_src.s_addr && ip->ip_dst.s_addr == cs->cs_ip.ip_dst.s_addr && *(long *)th == ((long *)&cs->cs_ip)[getip_hl(cs->cs_ip)]) goto found; } while (cs != lastcs); /* * Didn't find it -- re-use oldest cstate. Send an * uncompressed packet that tells the other side what * connection number we're using for this conversation. * Note that since the state list is circular, the oldest * state points to the newest and we only need to set * last_cs to update the lru linkage. */ INCR(vjs_misses); comp->last_cs = lcs; hlen += getth_off(*th); hlen <<= 2; /* Check that the IP/TCP headers are contained in the first buffer. */ if (hlen > pb->len) return (TYPE_IP); goto uncompressed; found: /* * Found it -- move to the front on the connection list. */ if (cs == lastcs) comp->last_cs = lcs; else { lcs->cs_next = cs->cs_next; cs->cs_next = lastcs->cs_next; lastcs->cs_next = cs; } } oth = (struct tcphdr *)&((long *)&cs->cs_ip)[hlen]; deltaS = hlen; hlen += getth_off(*th); hlen <<= 2; /* Check that the IP/TCP headers are contained in the first buffer. */ if (hlen > pb->len) { PPPDEBUG((LOG_INFO, "vj_compress_tcp: header len %d spans buffers\n", hlen)); return (TYPE_IP); } /* * Make sure that only what we expect to change changed. The first * line of the `if' checks the IP protocol version, header length & * type of service. The 2nd line checks the "Don't fragment" bit. * The 3rd line checks the time-to-live and protocol (the protocol * check is unnecessary but costless). The 4th line checks the TCP * header length. The 5th line checks IP options, if any. The 6th * line checks TCP options, if any. If any of these things are * different between the previous & current datagram, we send the * current datagram `uncompressed'. */ if (((u_short *)ip)[0] != ((u_short *)&cs->cs_ip)[0] || ((u_short *)ip)[3] != ((u_short *)&cs->cs_ip)[3] || ((u_short *)ip)[4] != ((u_short *)&cs->cs_ip)[4] || getth_off(*th) != getth_off(*oth) || (deltaS > 5 && BCMP(ip + 1, &cs->cs_ip + 1, (deltaS - 5) << 2)) || (getth_off(*th) > 5 && BCMP(th + 1, oth + 1, (getth_off(*th) - 5) << 2))) goto uncompressed; /* * Figure out which of the changing fields changed. The * receiver expects changes in the order: urgent, window, * ack, seq (the order minimizes the number of temporaries * needed in this section of code). */ if (th->th_flags & TCP_URG) { deltaS = ntohs(th->th_urp); ENCODEZ(deltaS); changes |= NEW_U; } else if (th->th_urp != oth->th_urp) /* argh! URG not set but urp changed -- a sensible * implementation should never do this but RFC793 * doesn't prohibit the change so we have to deal * with it. */ goto uncompressed; if ((deltaS = (u_short)(ntohs(th->th_win) - ntohs(oth->th_win))) != 0) { ENCODE(deltaS); changes |= NEW_W; } if ((deltaL = ntohl(th->th_ack) - ntohl(oth->th_ack)) != 0) { if (deltaL > 0xffff) goto uncompressed; deltaA = (u_short)deltaL; ENCODE(deltaA); changes |= NEW_A; } if ((deltaL = ntohl(th->th_seq) - ntohl(oth->th_seq)) != 0) { if (deltaL > 0xffff) goto uncompressed; deltaS = (u_short)deltaL; ENCODE(deltaS); changes |= NEW_S; } switch(changes) { case 0: /* * Nothing changed. If this packet contains data and the * last one didn't, this is probably a data packet following * an ack (normal on an interactive connection) and we send * it compressed. Otherwise it's probably a retransmit, * retransmitted ack or window probe. Send it uncompressed * in case the other side missed the compressed version. */ if (ip->ip_len != cs->cs_ip.ip_len && ntohs(cs->cs_ip.ip_len) == hlen)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -