⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mydbpsk.py

📁 GNU_Radio GNU radio is a free/open-source software toolkit for and the con
💻 PY
📖 第 1 页 / 共 2 页
字号:
#!/usr/bin/env python## Copyright 2005,2006 Free Software Foundation, Inc.# # This file is part of GNU Radio# # GNU Radio is free software; you can redistribute it and/or modify# it under the terms of the GNU General Public License as published by# the Free Software Foundation; either version 2, or (at your option)# any later version.# # GNU Radio is distributed in the hope that it will be useful,# but WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the# GNU General Public License for more details.# # You should have received a copy of the GNU General Public License# along with GNU Radio; see the file COPYING.  If not, write to# the Free Software Foundation, Inc., 51 Franklin Street,# Boston, MA 02110-1301, USA.# # See gnuradio-examples/python/gmsk2 for examples"""differential BPSK modulation and demodulation."""from gnuradio import gr, gru, modulation_utilsfrom math import pi, sqrtimport pskimport cmathimport Numericfrom pprint import pprint# default values (used in __init__ and add_options)_def_samples_per_symbol = 2_def_excess_bw = 0.35_def_gray_code = True_def_verbose = True_def_log = False_def_costas_alpha = 0.05_def_gain_mu = 0.03_def_mu = 0.05_def_omega_relative_limit = 0.005# /////////////////////////////////////////////////////////////////////////////#                             DBPSK modulator# /////////////////////////////////////////////////////////////////////////////class dbpsk_mod(gr.hier_block):    def __init__(self, fg,		 #arrChenData,                 samples_per_symbol=_def_samples_per_symbol,                 excess_bw=_def_excess_bw,                 gray_code=_def_gray_code,                 verbose=_def_verbose,                 log=_def_log):        """	Hierarchical block for RRC-filtered differential BPSK modulation.	The input is a byte stream (unsigned char) and the	output is the complex modulated signal at baseband.        	@param fg: flow graph	@type fg: flow graph	@param samples_per_symbol: samples per baud >= 2	@type samples_per_symbol: integer	@param excess_bw: Root-raised cosine filter excess bandwidth	@type excess_bw: float        @param gray_code: Tell modulator to Gray code the bits        @type gray_code: bool        @param verbose: Print information about modulator?        @type verbose: bool        @param log: Log modulation data to files?        @type log: bool	"""        self._fg = fg        self._samples_per_symbol = samples_per_symbol        self._excess_bw = excess_bw        self._gray_code = gray_code	#self._arrChenData = arrChenData        if not isinstance(self._samples_per_symbol, int) or self._samples_per_symbol < 2:            raise TypeError, ("sbp must be an integer >= 2, is %d" % self._samples_per_symbol)        	ntaps = 11 * self._samples_per_symbol        arity = pow(2,self.bits_per_symbol())               # turn bytes into k-bit vectors        self.bytes2chunks = \          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)        if self._gray_code:            self.symbol_mapper = gr.map_bb(psk.binary_to_gray[arity])        else:            self.symbol_mapper = gr.map_bb(psk.binary_to_ungray[arity])        self.diffenc = gr.diff_encoder_bb(arity)                self.chunks2symbols = gr.chunks_to_symbols_bc(psk.constellation[arity])        # pulse shaping filter	self.rrc_taps = gr.firdes.root_raised_cosine(	    self._samples_per_symbol, # gain  (samples_per_symbol since we're                                      # interpolating by samples_per_symbol)	    self._samples_per_symbol, # sampling rate	    1.0,		      # symbol rate	    self._excess_bw,          # excess bandwidth (roll-off factor)            ntaps)	self.rrc_filter = gr.interp_fir_filter_ccf(self._samples_per_symbol,                                                   self.rrc_taps)	# Connect        #fg.connect(self.bytes2chunks, self.symbol_mapper, self.diffenc,	#chen        #           self.chunks2symbols, self.rrc_filter)        fg.connect(self.bytes2chunks, self.symbol_mapper, self.diffenc,                   self.chunks2symbols)        if verbose:            self._print_verbage()                    if log:            self._setup_logging()            	# Initialize base class	#gr.hier_block.__init__(self, self._fg, self.bytes2chunks, self.rrc_filter)	#chen	gr.hier_block.__init__(self, self._fg, self.bytes2chunks, self.chunks2symbols)    def samples_per_symbol(self):        return self._samples_per_symbol    def bits_per_symbol(self=None):   # static method that's also callable on an instance        return 1    bits_per_symbol = staticmethod(bits_per_symbol)      # make it a static method.  RTFM    def add_options(parser):        """        Adds DBPSK modulation-specific options to the standard parser        """        parser.add_option("", "--excess-bw", type="float", default=_def_excess_bw,                          help="set RRC excess bandwith factor [default=%default]")        parser.add_option("", "--no-gray-code", dest="gray_code",                          action="store_false", default=True,                          help="disable gray coding on modulated bits (PSK)")    add_options=staticmethod(add_options)    def extract_kwargs_from_options(options):        """        Given command line options, create dictionary suitable for passing to __init__        """        return modulation_utils.extract_kwargs_from_options(dbpsk_mod.__init__,                                                            ('self', 'fg'), options)    extract_kwargs_from_options=staticmethod(extract_kwargs_from_options)    def _print_verbage(self):        print "bits per symbol = %d" % self.bits_per_symbol()        print "Gray code = %s" % self._gray_code        print "RRC roll-off factor = %.2f" % self._excess_bw    def _setup_logging(self):        print "Modulation logging turned on."        self._fg.connect(self.bytes2chunks,                         gr.file_sink(gr.sizeof_char, "bytes2chunks.dat"))        self._fg.connect(self.symbol_mapper,                         gr.file_sink(gr.sizeof_char, "graycoder.dat"))        self._fg.connect(self.diffenc,                         gr.file_sink(gr.sizeof_char, "diffenc.dat"))        self._fg.connect(self.chunks2symbols,                         gr.file_sink(gr.sizeof_gr_complex, "chunks2symbols.dat"))        #self._fg.connect(self.rrc_filter,	#chen        #                 gr.file_sink(gr.sizeof_gr_complex, "rrc_filter.dat"))              # /////////////////////////////////////////////////////////////////////////////#                             DBPSK demodulator##      Differentially coherent detection of differentially encoded BPSK# /////////////////////////////////////////////////////////////////////////////class dbpsk_demod(gr.hier_block):    def __init__(self, fg,                 samples_per_symbol=_def_samples_per_symbol,                 excess_bw=_def_excess_bw,                 costas_alpha=_def_costas_alpha,                 gain_mu=_def_gain_mu,                 mu=_def_mu,                 omega_relative_limit=_def_omega_relative_limit,                 gray_code=_def_gray_code,                 verbose=_def_verbose,                 log=_def_log):        """	Hierarchical block for RRC-filtered differential BPSK demodulation	The input is the complex modulated signal at baseband.	The output is a stream of bits packed 1 bit per byte (LSB)	@param fg: flow graph	@type fg: flow graph	@param samples_per_symbol: samples per symbol >= 2	@type samples_per_symbol: float	@param excess_bw: Root-raised cosine filter excess bandwidth

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -