📄 nand_if.c
字号:
}
LUT [ MAX_LOG_BLOCKS_PER_ZONE + WEAR_DEPTH - 1] = LUT_Item ;
#endif
return NAND_OK;
}
/*******************************************************************************
* Function Name : NAND_GetAddress
* Description : Translate logical address into a phy one
* Input : None
* Output : None
* Return : Status
*******************************************************************************/
static NAND_ADDRESS NAND_GetAddress (u32 Address)
{
NAND_ADDRESS Address_t;
Address_t.Page = Address & (NAND_BLOCK_SIZE - 1);
Address_t.Block = Address / NAND_BLOCK_SIZE;
Address_t.Zone = 0;
while (Address_t.Block >= MAX_LOG_BLOCKS_PER_ZONE)
{
Address_t.Block -= MAX_LOG_BLOCKS_PER_ZONE;
Address_t.Zone++;
}
return Address_t;
}
/*******************************************************************************
* Function Name : NAND_GetFreeBlock
* Description : Look for a free block for data exchange
* Input : None
* Output : None
* Return : Status
*******************************************************************************/
static u16 NAND_GetFreeBlock (void)
{
return LUT[MAX_LOG_BLOCKS_PER_ZONE]& ~(USED_BLOCK | VALID_BLOCK);
}
/*******************************************************************************
* Function Name : ReadSpareArea
* Description : Check used block
* Input : None
* Output : None
* Return : Status
*******************************************************************************/
SPARE_AREA ReadSpareArea (u32 address)
{
SPARE_AREA t;
u8 Buffer[16];
NAND_ADDRESS address_s;
address_s = NAND_ConvertPhyAddress(address);
FSMC_NAND_ReadSpareArea(Buffer , address_s, 1) ;
t = *(SPARE_AREA *)Buffer;
return t;
}
/*******************************************************************************
* Function Name : NAND_Copy
* Description : Copy page
* Input : None
* Output : None
* Return : Status
*******************************************************************************/
static u16 NAND_Copy (NAND_ADDRESS Address_Src, NAND_ADDRESS Address_Dest, u16 PageToCopy)
{
u8 Copybuff[512];
for ( ; PageToCopy > 0 ; PageToCopy-- )
{
FSMC_NAND_ReadSmallPage ((u8 *)Copybuff, Address_Src , 1 );
FSMC_NAND_WriteSmallPage ((u8 *)Copybuff, Address_Dest, 1);
FSMC_NAND_AddressIncrement(&Address_Src);
FSMC_NAND_AddressIncrement(&Address_Dest);
}
return NAND_OK;
}
/*******************************************************************************
* Function Name : NAND_Format
* Description : Format the entire NAND flash
* Input : None
* Output : None
* Return : Status
*******************************************************************************/
u16 NAND_Format (void)
{
NAND_ADDRESS phAddress;
SPARE_AREA SpareArea;
u32 BlockIndex;
for (BlockIndex = 0 ; BlockIndex < NAND_ZONE_SIZE * NAND_MAX_ZONE; BlockIndex++)
{
phAddress = NAND_ConvertPhyAddress(BlockIndex * NAND_BLOCK_SIZE );
SpareArea = ReadSpareArea(BlockIndex * NAND_BLOCK_SIZE);
if((SpareArea.DataStatus != 0)||(SpareArea.BlockStatus != 0)){
FSMC_NAND_EraseBlock (phAddress);
}
}
NAND_BuildLUT(0);
return NAND_OK;
}
/*******************************************************************************
* Function Name : NAND_Write_Cleanup
* Description : None
* Input : None
* Output : None
* Return : Status
*******************************************************************************/
static u16 NAND_Write_Cleanup (void)
{
u16 tempSpareArea [8];
u16 Page_Back;
if ( Block_State == OLD_BLOCK )
{
/* precopy old first pages */
if (Initial_Page != 0)
{
Page_Back = wAddress.Page;
fAddress.Page = wAddress.Page = 0;
NAND_Copy (wAddress, fAddress, Initial_Page);
wAddress.Page = Page_Back ;
}
/* postcopy remaining pages */
if ((NAND_BLOCK_SIZE - (wAddress.Page + 1)) != 0)
{
FSMC_NAND_AddressIncrement(&wAddress);
fAddress.Page = wAddress.Page;
NAND_Copy (wAddress, fAddress, NAND_BLOCK_SIZE - wAddress.Page);
}
/* assign logical address to new block */
tempSpareArea [0] = LogAddress | USED_BLOCK ;
tempSpareArea [1] = 0xFFFF;
tempSpareArea [2] = 0xFFFF;
fAddress.Page = 0x00;
FSMC_NAND_WriteSpareArea( (u8 *)tempSpareArea , fAddress , 1);
/* erase old block */
FSMC_NAND_EraseBlock(wAddress);
NAND_CleanLUT(wAddress.Zone);
}
else
{/* unused block case */
/* assign logical address to the new used block */
tempSpareArea [0] = LogAddress | USED_BLOCK ;
tempSpareArea [1] = 0xFFFF;
tempSpareArea [2] = 0xFFFF;
wAddress.Page = 0x00;
FSMC_NAND_WriteSpareArea((u8 *)tempSpareArea , wAddress, 1);
NAND_CleanLUT(wAddress.Zone);
}
return NAND_OK;
}
/*******************************************************************************
* Function Name : NAND_ConvertPhyAddress
* Description : None
* Input : physical Address
* Output : None
* Return : Status
*******************************************************************************/
static NAND_ADDRESS NAND_ConvertPhyAddress (u32 Address)
{
NAND_ADDRESS Address_t;
Address_t.Page = Address & (NAND_BLOCK_SIZE - 1);
Address_t.Block = Address / NAND_BLOCK_SIZE;
Address_t.Zone = 0;
while (Address_t.Block >= MAX_PHY_BLOCKS_PER_ZONE)
{
Address_t.Block -= MAX_PHY_BLOCKS_PER_ZONE;
Address_t.Zone++;
}
return Address_t;
}
/*******************************************************************************
* Function Name : NAND_BuildLUT
* Description : Build the look up table
* Input : None
* Output : None
* Return : Status
* !!!! NOTE : THIS ALGORITHM IS A SUBJECT OF PATENT FOR STMICROELECTRONICS !!!!!
*******************************************************************************/
static u16 NAND_BuildLUT (u8 ZoneNbr)
{
u16 pBadBlock, pCurrentBlock, pFreeBlock;
SPARE_AREA SpareArea;
/*****************************************************************************
1st step : Init.
*****************************************************************************/
/*Init the LUT (assume all blocks free) */
for (pCurrentBlock = 0 ; pCurrentBlock < MAX_PHY_BLOCKS_PER_ZONE ; pCurrentBlock++)
{
LUT[pCurrentBlock] = FREE_BLOCK; /* 12th bit is set to 1 */
}
/* Init Pointers */
pBadBlock = MAX_PHY_BLOCKS_PER_ZONE - 1;
pCurrentBlock = 0;
/*****************************************************************************
2nd step : locate used and bad blocks
*****************************************************************************/
while (pCurrentBlock < MAX_PHY_BLOCKS_PER_ZONE)
{
SpareArea = ReadSpareArea(pCurrentBlock * NAND_BLOCK_SIZE + (ZoneNbr * NAND_BLOCK_SIZE * MAX_PHY_BLOCKS_PER_ZONE));
if ((SpareArea.DataStatus == 0) || (SpareArea.BlockStatus == 0))
{
LUT[pBadBlock--] |= pCurrentBlock | (u16)BAD_BLOCK ;
LUT[pCurrentBlock] &= (u16)~FREE_BLOCK;
if (pBadBlock == MAX_LOG_BLOCKS_PER_ZONE)
{
return NAND_FAIL;
}
}
else if (SpareArea.LogicalIndex != 0xFFFF)
{
LUT[SpareArea.LogicalIndex & 0x3FF] |= pCurrentBlock | VALID_BLOCK | USED_BLOCK;
LUT[pCurrentBlock] &= (u16)( ~FREE_BLOCK);
}
pCurrentBlock++ ;
}
/*****************************************************************************
3rd step : locate Free Blocks by scanning the LUT already built partially
*****************************************************************************/
pFreeBlock = 0;
for (pCurrentBlock = 0 ; pCurrentBlock < MAX_PHY_BLOCKS_PER_ZONE ; pCurrentBlock++ )
{
if ( !(LUT[pCurrentBlock]& USED_BLOCK))
{
do
{
if (LUT[pFreeBlock] & FREE_BLOCK)
{
LUT [pCurrentBlock] |= pFreeBlock;
LUT [pFreeBlock] &= ~FREE_BLOCK;
break;
}
pFreeBlock++;
}
while ( pFreeBlock < MAX_PHY_BLOCKS_PER_ZONE );
}
}
return NAND_OK;
}
#endif
/******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -