📄 gaussmarkovwalk.java
字号:
package de.uni_stuttgart.informatik.canu.mobisim.mobilitymodels;
import de.uni_stuttgart.informatik.canu.mobisim.core.*;
import de.uni_stuttgart.informatik.canu.mobisim.notifications.*;
/**
* Title: Canu Mobility Simulation Environment
* Description:
* Copyright: Copyright (c) 2001-2003
* Company: University of Stuttgart
* @author Canu Research group
* @version 1.1
*/
/**
* This class implements the Gauss-Markov Walk Mobility Model
* @author Illya Stepanov
*/
public class GaussMarkovWalk extends Movement
{
/**
* Tuning parameter
*/
protected float alpha = 0.0f;
/**
* Current movement vector
*/
protected Vector3D movement;
/**
* Time while the movement is kept constant
*/
protected long step = 0;
/**
* Constructor
*/
public GaussMarkovWalk()
{
movement = new Vector3D(0, 0, 0);
}
/**
* Constructor. <br>
* <br>
* @param node parent {@link Node Node} object
*/
public GaussMarkovWalk(Node node)
{
super(node);
movement = new Vector3D(0, 0, 0);
}
/**
* Returns the module's description. <br>
* <br>
* @return extension module's description
*/
public String getDescription()
{
return "Gauss-Markov Walk movement module";
}
/**
* Chooses new movement
*/
protected void chooseNewMovement()
{
java.util.Random rand=u.getRandom();
Node owner=(Node)this.owner;
Position3D destination = null;
Vector3D newMovement = null;
Vector3D wholeMovement = null;
// choose new motion parameters unless the movement takes place
// in the simulation area
do
{
newMovement = movement.mult(alpha).add(
(new Vector3D(rand.nextGaussian(), rand.nextGaussian(), 0.0)).mult(
Math.sqrt(1-alpha*alpha)));
wholeMovement = newMovement.mult(step/u.getStepDuration());
// calculate destination
destination = owner.getPosition().add(wholeMovement);
}
while ( (destination.getX()<0.0f)||(destination.getX()>u.getDimensionX())
||(destination.getY()<0.0f)||(destination.getY()>u.getDimensionY()) );
movement = newMovement;
float speed = (float)wholeMovement.getLength()/step;
u.sendNotification(new MovementChangedNotification(this, u,
destination, speed*1000.0f));
}
/**
* Executes the extension. <br>
* <br>
* The method is called on every simulation timestep.
* @return 0 - the module should be executed on next timesteps,
* -1 - the module should not be executed on further timesteps and should be removed from the extensions' list
*/
public int act()
{
Node owner = (Node)this.owner;
if (u.getTime() % step == 0 )
chooseNewMovement();
owner.setPosition(owner.getPosition().add(movement));
return 0;
}
/**
* Initializes the object from XML tag. <br>
* <br>
* @param element source tag
* @throws Exception Exception if parameters are invalid
*/
public void load(org.w3c.dom.Element element) throws Exception
{
Node owner = (Node)this.owner;
u.sendNotification(new LoaderNotification(this, u,
"Loading GaussMarkovWalk extension"));
super.load(element);
// process child tags
org.w3c.dom.NodeList list = element.getChildNodes();
int len=list.getLength();
for(int i=0; i<len; i++)
{
org.w3c.dom.Node item = list.item(i);
String tag = item.getNodeName();
if(tag.equals("#text"))
{
// skip it
continue;
}
else
if(tag.equals("#comment"))
{
// skip it
continue;
}
else
if(tag.equals("alpha"))
{
u.sendNotification(new LoaderNotification(this, u,
"Processing <alpha> tag"));
// read and convert alpha value
alpha=Float.parseFloat(item.getFirstChild().getNodeValue());
u.sendNotification(new LoaderNotification(this, u,
"Finished processing <alpha> tag"));
}
else
if(tag.equals("step"))
{
u.sendNotification(new LoaderNotification(this, u,
"Processing <step> tag"));
// read and convert maximal speed
step=(long)(Float.parseFloat(item.getFirstChild().getNodeValue())*1000);
u.sendNotification(new LoaderNotification(this, u,
"Finished processing <step> tag"));
}
}
// checkout
if ( (alpha<0)||(alpha>1)||(step<=0) )
throw new Exception("Movement parameters are invalid:\n"
+"alpha="+alpha+", step="+(float)step/1000);
u.sendNotification(new LoaderNotification(this, u,
"Finished loading GaussMarkovWalk extension"));
}//proc
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -