⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix3d.html

📁 java 3d帮助文档
💻 HTML
📖 第 1 页 / 共 5 页
字号:
public final void <B>set</B>(double[]&nbsp;m)</PRE><DL><DD>Sets the values in this Matrix3d equal to the row-major  array parameter (ie, the first three elements of the  array will be copied into the first row of this matrix, etc.).<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m</CODE> - the double precision array of length 9</DL></DD></DL><HR><A NAME="invert(javax.vecmath.Matrix3d)"><!-- --></A><H3>invert</H3><PRE>public final void <B>invert</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Sets the value of this matrix to the matrix inverse of the passed matrix m1.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix to be inverted</DL></DD></DL><HR><A NAME="invert()"><!-- --></A><H3>invert</H3><PRE>public final void <B>invert</B>()</PRE><DL><DD>Inverts this matrix in place.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="determinant()"><!-- --></A><H3>determinant</H3><PRE>public final double <B>determinant</B>()</PRE><DL><DD>Computes the determinant of this matrix.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the determinant of the matrix</DL></DD></DL><HR><A NAME="set(double)"><!-- --></A><H3>set</H3><PRE>public final void <B>set</B>(double&nbsp;scale)</PRE><DL><DD>Sets the value of this matrix to a scale matrix with the passed scale amount.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>scale</CODE> - the scale factor for the matrix</DL></DD></DL><HR><A NAME="rotX(double)"><!-- --></A><H3>rotX</H3><PRE>public final void <B>rotX</B>(double&nbsp;angle)</PRE><DL><DD>Sets the value of this matrix to a counter clockwise rotation  about the x axis.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>angle</CODE> - the angle to rotate about the X axis in radians</DL></DD></DL><HR><A NAME="rotY(double)"><!-- --></A><H3>rotY</H3><PRE>public final void <B>rotY</B>(double&nbsp;angle)</PRE><DL><DD>Sets the value of this matrix to a counter clockwise rotation  about the y axis.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>angle</CODE> - the angle to rotate about the Y axis in radians</DL></DD></DL><HR><A NAME="rotZ(double)"><!-- --></A><H3>rotZ</H3><PRE>public final void <B>rotZ</B>(double&nbsp;angle)</PRE><DL><DD>Sets the value of this matrix to a counter clockwise rotation  about the z axis.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>angle</CODE> - the angle to rotate about the Z axis in radians</DL></DD></DL><HR><A NAME="mul(double)"><!-- --></A><H3>mul</H3><PRE>public final void <B>mul</B>(double&nbsp;scalar)</PRE><DL><DD>Multiplies each element of this matrix by a scalar.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>scalar</CODE> - The scalar multiplier.</DL></DD></DL><HR><A NAME="mul(double, javax.vecmath.Matrix3d)"><!-- --></A><H3>mul</H3><PRE>public final void <B>mul</B>(double&nbsp;scalar,                      <A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Multiplies each element of matrix m1 by a scalar and places the result into this.  Matrix m1 is not modified.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>scalar</CODE> - the scalar multiplier<DD><CODE>m1</CODE> - the original matrix</DL></DD></DL><HR><A NAME="mul(javax.vecmath.Matrix3d)"><!-- --></A><H3>mul</H3><PRE>public final void <B>mul</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Sets the value of this matrix to the result of multiplying itself with matrix m1.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the other matrix</DL></DD></DL><HR><A NAME="mul(javax.vecmath.Matrix3d, javax.vecmath.Matrix3d)"><!-- --></A><H3>mul</H3><PRE>public final void <B>mul</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1,                      <A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m2)</PRE><DL><DD>Sets the value of this matrix to the result of multiplying the two argument matrices together.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the first matrix<DD><CODE>m2</CODE> - the second matrix</DL></DD></DL><HR><A NAME="mulNormalize(javax.vecmath.Matrix3d)"><!-- --></A><H3>mulNormalize</H3><PRE>public final void <B>mulNormalize</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Multiplies this matrix by matrix m1, does an SVD normalization   of the result, and places the result back into this matrix  this = SVDnorm(this*m1).<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix on the right hand side of the multiplication</DL></DD></DL><HR><A NAME="mulNormalize(javax.vecmath.Matrix3d, javax.vecmath.Matrix3d)"><!-- --></A><H3>mulNormalize</H3><PRE>public final void <B>mulNormalize</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1,                               <A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m2)</PRE><DL><DD>Multiplies matrix m1 by matrix m2, does an SVD normalization    of the result, and places the result into this matrix  this = SVDnorm(m1*m2).<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix on the left hand side of the multiplication<DD><CODE>m2</CODE> - the matrix on the right hand side of the multiplication</DL></DD></DL><HR><A NAME="mulTransposeBoth(javax.vecmath.Matrix3d, javax.vecmath.Matrix3d)"><!-- --></A><H3>mulTransposeBoth</H3><PRE>public final void <B>mulTransposeBoth</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1,                                   <A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m2)</PRE><DL><DD>Multiplies the transpose of matrix m1 times the transpose of matrix  m2, and places the result into this.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix on the left hand side of the multiplication<DD><CODE>m2</CODE> - the matrix on the right hand side of the multiplication</DL></DD></DL><HR><A NAME="mulTransposeRight(javax.vecmath.Matrix3d, javax.vecmath.Matrix3d)"><!-- --></A><H3>mulTransposeRight</H3><PRE>public final void <B>mulTransposeRight</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1,                                    <A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m2)</PRE><DL><DD>Multiplies matrix m1 times the transpose of matrix m2, and  places the result into this.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix on the left hand side of the multiplication<DD><CODE>m2</CODE> - the matrix on the right hand side of the multiplication</DL></DD></DL><HR><A NAME="mulTransposeLeft(javax.vecmath.Matrix3d, javax.vecmath.Matrix3d)"><!-- --></A><H3>mulTransposeLeft</H3><PRE>public final void <B>mulTransposeLeft</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1,                                   <A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m2)</PRE><DL><DD>Multiplies the transpose of matrix m1 times matrix m2, and  places the result into this.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix on the left hand side of the multiplication<DD><CODE>m2</CODE> - the matrix on the right hand side of the multiplication</DL></DD></DL><HR><A NAME="normalize()"><!-- --></A><H3>normalize</H3><PRE>public final void <B>normalize</B>()</PRE><DL><DD>Performs singular value decomposition normalization of this matrix.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="normalize(javax.vecmath.Matrix3d)"><!-- --></A><H3>normalize</H3><PRE>public final void <B>normalize</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Perform singular value decomposition normalization of matrix m1 and place the normalized values into this.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - Provides the matrix values to be normalized</DL></DD></DL><HR><A NAME="normalizeCP()"><!-- --></A><H3>normalizeCP</H3><PRE>public final void <B>normalizeCP</B>()</PRE><DL><DD>Perform cross product normalization of this matrix.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="normalizeCP(javax.vecmath.Matrix3d)"><!-- --></A><H3>normalizeCP</H3><PRE>public final void <B>normalizeCP</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Perform cross product normalization of matrix m1 and place the normalized values into this.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - Provides the matrix values to be normalized</DL></DD></DL><HR><A NAME="equals(javax.vecmath.Matrix3d)"><!-- --></A><H3>equals</H3><PRE>public boolean <B>equals</B>(<A HREF="../../javax/vecmath/Matrix3d.html">Matrix3d</A>&nbsp;m1)</PRE><DL><DD>Returns true if all of the data members of Matrix3d m1 are equal to the corresponding data members in this Matrix3d.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>m1</CODE> - the matrix with which the comparison is made<DT><B>Returns:</B><DD>true or false</DL></DD></DL><HR><A NAME="equals(java.lang.Object)"><!-- --></A><H3>equals</H3><PRE>public boolean <B>equals</B>(java.lang.Object&nbsp;t1)</PRE><DL><DD>Returns true i

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -