📄 anisotropicwardshader.java
字号:
package org.sunflow.core.shader;
import org.sunflow.SunflowAPI;
import org.sunflow.core.LightSample;
import org.sunflow.core.ParameterList;
import org.sunflow.core.Ray;
import org.sunflow.core.Shader;
import org.sunflow.core.ShadingState;
import org.sunflow.image.Color;
import org.sunflow.math.OrthoNormalBasis;
import org.sunflow.math.Vector3;
public class AnisotropicWardShader implements Shader {
private Color rhoD; // diffuse reflectance
private Color rhoS; // specular reflectance
private float alphaX;
private float alphaY;
private int numRays;
public AnisotropicWardShader() {
rhoD = Color.GRAY;
rhoS = Color.GRAY;
alphaX = 1;
alphaY = 1;
numRays = 4;
}
public boolean update(ParameterList pl, SunflowAPI api) {
rhoD = pl.getColor("diffuse", rhoD);
rhoS = pl.getColor("specular", rhoS);
alphaX = pl.getFloat("roughnessX", alphaX);
alphaY = pl.getFloat("roughnessY", alphaY);
numRays = pl.getInt("samples", numRays);
return true;
}
protected Color getDiffuse(ShadingState state) {
return rhoD;
}
private float brdf(Vector3 i, Vector3 o, OrthoNormalBasis basis) {
float fr = 4 * (float) Math.PI * alphaX * alphaY;
fr *= (float) Math.sqrt(basis.untransformZ(i) * basis.untransformZ(o));
Vector3 h = Vector3.add(i, o, new Vector3());
basis.untransform(h);
float hx = h.x / alphaX;
hx *= hx;
float hy = h.y / alphaY;
hy *= hy;
float hn = h.z * h.z;
fr = (float) Math.exp(-(hx + hy) / hn) / fr;
return fr;
}
public Color getRadiance(ShadingState state) {
// make sure we are on the right side of the material
state.faceforward();
OrthoNormalBasis onb = state.getBasis();
// direct lighting and caustics
state.initLightSamples();
state.initCausticSamples();
Color lr = Color.black();
// compute specular contribution
if (state.includeSpecular()) {
Vector3 in = state.getRay().getDirection().negate(new Vector3());
for (LightSample sample : state) {
float cosNL = sample.dot(state.getNormal());
float fr = brdf(in, sample.getShadowRay().getDirection(), onb);
lr.madd(cosNL * fr, sample.getSpecularRadiance());
}
// indirect lighting - specular
if (numRays > 0) {
int n = state.getDepth() == 0 ? numRays : 1;
for (int i = 0; i < n; i++) {
// specular indirect lighting
double r1 = state.getRandom(i, 0, n);
double r2 = state.getRandom(i, 1, n);
float alphaRatio = alphaY / alphaX;
float phi = 0;
if (r1 < 0.25) {
double val = 4 * r1;
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
} else if (r1 < 0.5) {
double val = 1 - 4 * (0.5 - r1);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi = (float) Math.PI - phi;
} else if (r1 < 0.75) {
double val = 4 * (r1 - 0.5);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi += Math.PI;
} else {
double val = 1 - 4 * (1 - r1);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi = 2 * (float) Math.PI - phi;
}
float cosPhi = (float) Math.cos(phi);
float sinPhi = (float) Math.sin(phi);
float denom = (cosPhi * cosPhi) / (alphaX * alphaX) + (sinPhi * sinPhi) / (alphaY * alphaY);
float theta = (float) Math.atan(Math.sqrt(-Math.log(1 - r2) / denom));
float sinTheta = (float) Math.sin(theta);
float cosTheta = (float) Math.cos(theta);
Vector3 h = new Vector3();
h.x = sinTheta * cosPhi;
h.y = sinTheta * sinPhi;
h.z = cosTheta;
onb.transform(h);
Vector3 o = new Vector3();
float ih = Vector3.dot(h, in);
o.x = 2 * ih * h.x - in.x;
o.y = 2 * ih * h.y - in.y;
o.z = 2 * ih * h.z - in.z;
float no = onb.untransformZ(o);
float ni = onb.untransformZ(in);
float w = ih * cosTheta * cosTheta * cosTheta * (float) Math.sqrt(Math.abs(no / ni));
Ray r = new Ray(state.getPoint(), o);
lr.madd(w / n, state.traceGlossy(r, i));
}
}
lr.mul(rhoS);
}
// add diffuse contribution
lr.add(state.diffuse(getDiffuse(state)));
return lr;
}
public void scatterPhoton(ShadingState state, Color power) {
// make sure we are on the right side of the material
state.faceforward();
Color d = getDiffuse(state);
state.storePhoton(state.getRay().getDirection(), power, d);
float avgD = d.getAverage();
float avgS = rhoS.getAverage();
double rnd = state.getRandom(0, 0, 1);
if (rnd < avgD) {
// photon is scattered diffusely
power.mul(d).mul(1.0f / avgD);
OrthoNormalBasis onb = state.getBasis();
double u = 2 * Math.PI * rnd / avgD;
double v = state.getRandom(0, 1, 1);
float s = (float) Math.sqrt(v);
float s1 = (float) Math.sqrt(1.0f - v);
Vector3 w = new Vector3((float) Math.cos(u) * s, (float) Math.sin(u) * s, s1);
w = onb.transform(w, new Vector3());
state.traceDiffusePhoton(new Ray(state.getPoint(), w), power);
} else if (rnd < avgD + avgS) {
// photon is scattered specularly
power.mul(rhoS).mul(1 / avgS);
OrthoNormalBasis basis = state.getBasis();
Vector3 in = state.getRay().getDirection().negate(new Vector3());
double r1 = rnd / avgS;
double r2 = state.getRandom(0, 1, 1);
float alphaRatio = alphaY / alphaX;
float phi = 0;
if (r1 < 0.25) {
double val = 4 * r1;
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
} else if (r1 < 0.5) {
double val = 1 - 4 * (0.5 - r1);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi = (float) Math.PI - phi;
} else if (r1 < 0.75) {
double val = 4 * (r1 - 0.5);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi += Math.PI;
} else {
double val = 1 - 4 * (1 - r1);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi = 2 * (float) Math.PI - phi;
}
float cosPhi = (float) Math.cos(phi);
float sinPhi = (float) Math.sin(phi);
float denom = (cosPhi * cosPhi) / (alphaX * alphaX) + (sinPhi * sinPhi) / (alphaY * alphaY);
float theta = (float) Math.atan(Math.sqrt(-Math.log(1 - r2) / denom));
float sinTheta = (float) Math.sin(theta);
float cosTheta = (float) Math.cos(theta);
Vector3 h = new Vector3();
h.x = sinTheta * cosPhi;
h.y = sinTheta * sinPhi;
h.z = cosTheta;
basis.transform(h);
Vector3 o = new Vector3();
float ih = Vector3.dot(h, in);
o.x = 2 * ih * h.x - in.x;
o.y = 2 * ih * h.y - in.y;
o.z = 2 * ih * h.z - in.z;
Ray r = new Ray(state.getPoint(), o);
state.traceReflectionPhoton(r, power);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -