📄 mexbwblkslv.c
字号:
/* y = bwblkslv(L,b, [y]) Given block sparse Cholesky structure L, as generated by SPARCHOL, this solves the equation "L.L' * y(L.perm) = b", i.e. y(L.perm) = L.L'\b. The diagonal of L.L is taken to be all-1, i.e. it uses eye(n) + tril(L.L,-1). CAUTION: If y and b are SPARSE, then L.perm is NOT used, i.e. y = L.L'\b. If b is SPARSE, then the 3rd argument (y) must give the sparsity structure of the output variable y. See symbbwslv.c This file is part of SeDuMi 1.05 Copyright (C) 2001 Jos F. Sturm Dept. Econometrics & O.R., Tilburg University, the Netherlands. Supported by the Netherlands Organization for Scientific Research (NWO). Affiliation SeDuMi 1.03 and 1.04Beta (2000): Dept. Quantitative Economics, Maastricht University, the Netherlands. Affiliations up to SeDuMi 1.02 (AUG1998): CRL, McMaster University, Canada. Supported by the Netherlands Organization for Scientific Research (NWO). This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.*/#include "mex.h"#include "blksdp.h"#define Y_OUT plhs[0]#define L_IN prhs[0]#define B_IN prhs[1]#define MINNPARIN 2#define Y_IN prhs[2]#define NPARIN 3/* ============================================================ BACKWARD SOLVE: ============================================================ *//* ************************************************************ PROCEDURE bwsolve -- Solve y from L'*y = b, where L is lower-triangular. INPUT Ljc, Lir, Lpr - sparse lower triangular matrix xsuper - starting column in L for each (dense) supernode. nsuper - number of super nodes UPDATED y - full xsuper[nsuper]-vector, yOUTPUT = L' \ yINPUT. WORKING ARRAY fwork - length max(collen[i] - superlen[i]) <= m-1, where collen[i] := L.jc[xsuper[i]+1]-L.jc[xsuper[i]] and superlen[i] := xsuper[i+1]-xsuper[i]. ************************************************************ */void bwsolve(double *y, const int *Ljc, const int *Lir, const double *Lpr, const int *xsuper, const int nsuper, double *fwork){ int jsup,i,j,inz,k,jnnz; double yj; /* ------------------------------------------------------------ For each supernode jsup: ------------------------------------------------------------ */ j = xsuper[nsuper]; /* column after current snode (j=m)*/ for(jsup = nsuper-1; jsup >= 0; jsup--){ i = j; mxAssert(j == xsuper[jsup+1],""); inz = Ljc[--j]; inz++; /* jump over diagonal entry */ if(j <= xsuper[jsup]){/* ------------------------------------------------------------ If supernode is singleton j, then simply y[j] -= L(j+1:m,j)'*y(j+1:m) ------------------------------------------------------------ */ if(inz < Ljc[i]){ yj = Lpr[inz] * y[Lir[inz]]; for(++inz; inz < Ljc[i]; inz++) yj += Lpr[inz] * y[Lir[inz]]; y[j] -= yj; } } else{/* ------------------------------------------------------------ For a "real" supernode: Let fwork = sparse(y(i:m)), then let y[j] -= L(i:m,j)'*fwork for all j in supernode ------------------------------------------------------------ */ for(jnnz = 0; inz < Ljc[i]; inz++) fwork[jnnz++] = y[Lir[inz]]; if(jnnz > 0) while(i > xsuper[jsup]){ yj = realdot(Lpr+Ljc[i]-jnnz, fwork, jnnz); y[--i] -= yj; } k = 1; do{ /* ------------------------------------------------------------ It remains to do a dense bwsolve on nodes j-1:-1:xsuper[jsup] The equation L(:,j)'*yNEW = yOLD(j), yields y(j) -= L(j+(1:k),j)'*y(j+(1:k)), k=1:i-xsuper[jsup]-1. ------------------------------------------------------------ */ --j; y[j] -= realdot(Lpr+Ljc[j]+1, y+j+1, k++); } while(j > xsuper[jsup]); } }}/* ************************************************************ PROCEDURE selbwsolve -- Solve ynew from L'*y = yold, where L is lower-triangular and y is SPARSE. INPUT Ljc, Lir, Lpr - sparse lower triangular matrix xsuper - length nsuper+1, start of each (dense) supernode. nsuper - number of super nodes snode - length m array, mapping each node to the supernode containing it. yir - length ynnz array, listing all possible nonzeros entries in y. ynnz - number of nonzeros in y (from symbbwslv). UPDATED y - full vector, on input y = rhs, on output y = L'\rhs. only the yir(0:ynnz-1) entries are used and defined. ************************************************************ */void selbwsolve(double *y, const int *Ljc, const int *Lir, const double *Lpr, const int *xsuper, const int nsuper, const int *snode, const int *yir, const int ynnz){ int jsup,j,inz,jnz,nk, k; double yj; if(ynnz <= 0) return;/* ------------------------------------------------------------ Backward solve on each nonzero supernode snode[yir[jnz]] (=jsup-1). ------------------------------------------------------------ */ jnz = ynnz; /* point just beyond last nonzero (super)node in y */ while(jnz > 0){ j = yir[--jnz]; /* j is last subnode to be used */ jsup = snode[j]; nk = j - xsuper[jsup]; /* nk+1 = length supernode jsup in y */ jnz -= nk; /* point just beyond prev. nonzero supernode */ for(k = 0; k <= nk; k++, j--){/* ------------------------------------------------------------ The equation L(:,j)'*yNEW = yOLD(j), yields y(j) -= L(j+1:m,j)'*y. ------------------------------------------------------------ */ inz = Ljc[j]; inz++; /* jump over diagonal entry */ yj = realdot(Lpr+inz, y+j+1, k); /* super-nodal part */ for(inz += k; inz < Ljc[j+1]; inz++) yj += Lpr[inz] * y[Lir[inz]]; /* sparse part */ y[j] -= yj; } }}/* ============================================================ MAIN: MEXFUNCTION ============================================================ *//* ************************************************************ PROCEDURE mexFunction - Entry for Matlab y = bwblksolve(L,b, [y]) y(L.fullperm) = L.L' \ b ************************************************************ */void mexFunction(const int nlhs, mxArray *plhs[], const int nrhs, const mxArray *prhs[]){ const mxArray *L_FIELD; int m,n, j, k, nsuper, inz; double *y, *fwork; const double *permPr, *b, *xsuperPr; const int *yjc, *yir, *bjc, *bir; int *perm, *xsuper, *iwork, *snode; jcir L; char bissparse; /* ------------------------------------------------------------ Check for proper number of arguments ------------------------------------------------------------ */ if(nrhs < MINNPARIN) mexErrMsgTxt("fwblkslv requires more input arguments."); if(nlhs > 1) mexErrMsgTxt("fwblkslv generates only 1 output argument."); /* ------------------------------------------------------------ Disassemble block Cholesky structure L ------------------------------------------------------------ */ if(!mxIsStruct(L_IN)) mexErrMsgTxt("Parameter `L' should be a structure."); if( (L_FIELD = mxGetField(L_IN,0,"perm")) == NULL) /* L.perm */ mexErrMsgTxt("Missing field L.perm."); m = mxGetM(L_FIELD) * mxGetN(L_FIELD); permPr = mxGetPr(L_FIELD); if( (L_FIELD = mxGetField(L_IN,0,"L")) == NULL) /* L.L */ mexErrMsgTxt("Missing field L.L."); if( m != mxGetM(L_FIELD) || m != mxGetN(L_FIELD) ) mexErrMsgTxt("Size L.L mismatch."); if(!mxIsSparse(L_FIELD)) mexErrMsgTxt("L.L should be sparse."); L.jc = mxGetJc(L_FIELD); L.ir = mxGetIr(L_FIELD); L.pr = mxGetPr(L_FIELD); if( (L_FIELD = mxGetField(L_IN,0,"xsuper")) == NULL) /* L.xsuper */ mexErrMsgTxt("Missing field L.xsuper."); nsuper = mxGetM(L_FIELD) * mxGetN(L_FIELD) - 1; if( nsuper > m ) mexErrMsgTxt("Size L.xsuper mismatch."); xsuperPr = mxGetPr(L_FIELD); /* ------------------------------------------------------------ Get rhs matrix b. If it is sparse, then we also need the sparsity structure of y. ------------------------------------------------------------ */ b = mxGetPr(B_IN); if( mxGetM(B_IN) != m ) mexErrMsgTxt("Size mismatch b."); n = mxGetN(B_IN); if( (bissparse = mxIsSparse(B_IN)) ){ bjc = mxGetJc(B_IN); bir = mxGetIr(B_IN); if(nrhs < NPARIN) mexErrMsgTxt("bwblkslv requires more inputs in case of sparse b."); if(mxGetM(Y_IN) != m || mxGetN(Y_IN) != n) mexErrMsgTxt("Size mismatch y."); if(!mxIsSparse(Y_IN)) mexErrMsgTxt("y should be sparse."); }/* ------------------------------------------------------------ Allocate output y. If bissparse, then Y_IN gives the sparsity structure. ------------------------------------------------------------ */ if(!bissparse) Y_OUT = mxCreateDoubleMatrix(m, n, mxREAL); else{ yjc = mxGetJc(Y_IN); yir = mxGetIr(Y_IN); Y_OUT = mxCreateSparse(m,n, yjc[n],mxREAL); memcpy(mxGetJc(Y_OUT), yjc, (n+1) * sizeof(int)); memcpy(mxGetIr(Y_OUT), yir, yjc[n] * sizeof(int)); } y = mxGetPr(Y_OUT); /* ------------------------------------------------------------ Allocate working arrays ------------------------------------------------------------ */ fwork = (double *) mxCalloc(m, sizeof(double)); iwork = (int *) mxCalloc(2*m+nsuper+1, sizeof(int)); perm = iwork; /* m */ xsuper = iwork + m; /*nsuper+1*/ snode = xsuper + (nsuper+1); /* m */ /* ------------------------------------------------------------ Convert real to integer array, and from Fortran to C style. ------------------------------------------------------------ */ for(k = 0; k < m; k++) perm[k] = permPr[k] - 1; for(k = 0; k <= nsuper; k++) xsuper[k] = xsuperPr[k] - 1;/* ------------------------------------------------------------ In case of sparse b, we also create snode, which maps each subnode to the supernode containing it. ------------------------------------------------------------ */ if(bissparse) for(j = 0, k = 0; k < nsuper; k++) while(j < xsuper[k+1]) snode[j++] = k; /* ------------------------------------------------------------ The actual job is done here: y(perm) = L'\b. ------------------------------------------------------------ */ if(!bissparse) for(j = 0; j < n; j++){ memcpy(fwork,b, m * sizeof(double)); bwsolve(fwork,L.jc,L.ir,L.pr,xsuper,nsuper,y); /* y(m) as work */ for(k = 0; k < m; k++) /* y(perm) = fwork */ y[perm[k]] = fwork[k]; y += m; b += m; } else{ /* sparse y,b: don't use perm */ fzeros(fwork,m); for(j = 0; j < n; j++){ inz = yjc[j]; for(k = bjc[j]; k < bjc[j+1]; k++) /* fwork = b */ fwork[bir[k]] = b[k]; selbwsolve(fwork,L.jc,L.ir,L.pr,xsuper,nsuper, snode, yir+inz,yjc[j+1]-inz); for(k = inz; k < yjc[j+1]; k++) y[k] = fwork[yir[k]]; for(k = inz; k < yjc[j+1]; k++) /* fwork = all-0 */ fwork[yir[k]] = 0.0; } } /* ------------------------------------------------------------ RELEASE WORKING ARRAYS. ------------------------------------------------------------ */ mxFree(fwork); mxFree(iwork);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -