📄 max_vol_ellip_in_polyhedra.m
字号:
% Maximum volume inscribed ellipsoid in a polyhedron % Section 8.4.1, Boyd & Vandenberghe "Convex Optimization"% Original version by Lieven Vandenberghe% Updated for CVX by Almir Mutapcic - Jan 2006% (a figure is generated)%% We find the ellipsoid E of maximum volume that lies inside of% a polyhedra C described by a set of linear inequalities.%% C = { x | a_i^T x <= b_i, i = 1,...,m } (polyhedra)% E = { Bu + d | || u || <= 1 } (ellipsoid) %% This problem can be formulated as a log det maximization% which can then be computed using the det_rootn function, ie,% maximize log det B% subject to || B a_i || + a_i^T d <= b, for i = 1,...,m% problem datan = 2;px = [0 .5 2 3 1];py = [0 1 1.5 .5 -.5];m = size(px,2);pxint = sum(px)/m; pyint = sum(py)/m;px = [px px(1)];py = [py py(1)];% generate A,bA = zeros(m,n); b = zeros(m,1);for i=1:m A(i,:) = null([px(i+1)-px(i) py(i+1)-py(i)])'; b(i) = A(i,:)*.5*[px(i+1)+px(i); py(i+1)+py(i)]; if A(i,:)*[pxint; pyint]-b(i)>0 A(i,:) = -A(i,:); b(i) = -b(i); endend% formulate and solve the problemcvx_begin variable B(n,n) symmetric variable d(n) maximize( det_rootn( B ) ) subject to for i = 1:m norm( B*A(i,:)', 2 ) + A(i,:)*d <= b(i); endcvx_end% make the plotsnoangles = 200;angles = linspace( 0, 2 * pi, noangles );ellipse_inner = B * [ cos(angles) ; sin(angles) ] + d * ones( 1, noangles );ellipse_outer = 2*B * [ cos(angles) ; sin(angles) ] + d * ones( 1, noangles );clfplot(px,py)hold onplot( ellipse_inner(1,:), ellipse_inner(2,:), 'r--' );plot( ellipse_outer(1,:), ellipse_outer(2,:), 'r--' );axis squareaxis offhold off
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -