⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 max_vol_ellip_in_polyhedra.m

📁 斯坦福大学Grant和Boyd教授等开发的凸优化matlab工具箱
💻 M
字号:
% Maximum volume inscribed ellipsoid in a polyhedron % Section 8.4.1, Boyd & Vandenberghe "Convex Optimization"% Original version by Lieven Vandenberghe% Updated for CVX by Almir Mutapcic - Jan 2006% (a figure is generated)%% We find the ellipsoid E of maximum volume that lies inside of% a polyhedra C described by a set of linear inequalities.%% C = { x | a_i^T x <= b_i, i = 1,...,m } (polyhedra)% E = { Bu + d | || u || <= 1 } (ellipsoid) %% This problem can be formulated as a log det maximization% which can then be computed using the det_rootn function, ie,%     maximize     log det B%     subject to   || B a_i || + a_i^T d <= b,  for i = 1,...,m% problem datan = 2;px = [0 .5 2 3 1];py = [0 1 1.5 .5 -.5];m = size(px,2);pxint = sum(px)/m; pyint = sum(py)/m;px = [px px(1)];py = [py py(1)];% generate A,bA = zeros(m,n); b = zeros(m,1);for i=1:m  A(i,:) = null([px(i+1)-px(i) py(i+1)-py(i)])';  b(i) = A(i,:)*.5*[px(i+1)+px(i); py(i+1)+py(i)];  if A(i,:)*[pxint; pyint]-b(i)>0    A(i,:) = -A(i,:);    b(i) = -b(i);  endend% formulate and solve the problemcvx_begin    variable B(n,n) symmetric    variable d(n)    maximize( det_rootn( B ) )    subject to       for i = 1:m           norm( B*A(i,:)', 2 ) + A(i,:)*d <= b(i);       endcvx_end% make the plotsnoangles = 200;angles   = linspace( 0, 2 * pi, noangles );ellipse_inner  = B * [ cos(angles) ; sin(angles) ] + d * ones( 1, noangles );ellipse_outer  = 2*B * [ cos(angles) ; sin(angles) ] + d * ones( 1, noangles );clfplot(px,py)hold onplot( ellipse_inner(1,:), ellipse_inner(2,:), 'r--' );plot( ellipse_outer(1,:), ellipse_outer(2,:), 'r--' );axis squareaxis offhold off

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -