⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poly4_discr.m

📁 斯坦福大学Grant和Boyd教授等开发的凸优化matlab工具箱
💻 M
字号:
% Polynomial discrimination% Section 8.6.2, Boyd & Vandenberghe "Convex Optimization"% Original by Lieven Vandenberghe% Adapted for CVX by Joelle Skaf - 10/23/05% (a figure is generated)%% The goal is to find the polynomial of degree 4 on R^n that separates% two sets of points {x_1,...,x_N} and {y_1,...,y_N}. We are trying to find% the coefficients of an order-4-polynomial P(x) that would satisfy:%           minimize    t%               s.t.    P(x_i) <= t  for i = 1,...,N%                       P(y_i) >= t   for i = 1,...,M% Data generationrand('state',0);N = 100;M = 120;% The points X lie within a circle of radius 0.9, with a wedge of points% near [1.1,0] removed. The points Y lie outside a circle of radius 1.1,% with a wedge of points near [1.1,0] added. The wedges are precisely what% makes the separation difficult and interesting.X = 2 * rand(2,N) - 1;X = X * diag(0.9*rand(1,N)./sqrt(sum(X.^2)));Y = 2 * rand(2,M) - 1;Y = Y * diag((1.1+rand(1,M))./sqrt(sum(Y.^2)));d = sqrt(sum((X-[1.1;0]*ones(1,N)).^2));Y = [ Y, X(:,d<0.9) ];X = X(:,d>1);N = size(X,2);M = size(Y,2);% Construct Vandermonde-style monomial matricesp1   = [0,0,1,0,1,2,0,1,2,3,0,1,2,3,4]';p2   = [0,1,1,2,2,2,3,3,3,3,4,4,4,4,4]'-p1;np   = length(p1);op   = ones(np,1);monX = X(op,:) .^ p1(:,ones(1,N)) .* X(2*op,:) .^ p2(:,ones(1,N));monY = Y(op,:) .^ p1(:,ones(1,M)) .* Y(2*op,:) .^ p2(:,ones(1,M));% Solution via CVXfprintf(1,'Finding the optimal polynomial of order 4 that separates the 2 classes...');cvx_begin    variables a(np) t(1)    minimize ( t )    a'*monX <= t;    a'*monY >= -t;    % For normalization purposes only    norm(a) <= 1;cvx_endfprintf(1,'Done! \n');% Displaying resultsnopts = 2000;angles = linspace(0,2*pi,nopts);cont = zeros(2,nopts);for i=1:nopts   v = [cos(angles(i)); sin(angles(i))];   l = 0;  u = 1;   while ( u - l > 1e-3 )      s = (u+l)/2;      x = s * v;      if a' * ( x(op,:) .^ p1 .* x(2*op) .^ p2 ) > 0,           u = s;       else          l = s;      end   end;   s = (u+l)/2;   cont(:,i) = s*v;end;graph = plot(X(1,:),X(2,:),'o', Y(1,:), Y(2,:),'o', cont(1,:), cont(2,:), '-');set(graph(2),'MarkerFaceColor',[0 0.5 0]);title('Optimal order-4 polynomial that separates the 2 classes')% print -deps min-deg-discr.eps%%%% Dual infeasible ?????

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -