📄 eucl_proj_hlf.m
字号:
% Euclidean projection on a halfspace% Sec. 8.1.1, Boyd & Vandenberghe "Convex Optimization"% Joelle Skaf - 10/04/05%% The projection of x0 on a halfspace C = {x | a'*x <= b} is given by% minimize || x - x0 ||^2% s.t. a'*x <= b% It is also given by P_C(x0) = x0 + (b - a'*x0)*a/||a||^2 if a'*x0 > b% and x0 if a'*x0 <=bcvx_quiet(true);% Input datarandn('seed',0);n = 10;a = randn(n,1);b = randn(1);x0 = randn(n,1); % a'*x0 <=bx1 = x0 + a; % a'*x1 > b% Analytical solutionfprintf(1,'Computing the analytical solution for the case where a^T*x0 <=b...');pc_x0 = x0;fprintf(1,'Done! \n');fprintf(1,'Computing the analytical solution for the case where a^T*x0 > b...');pc_x1 = x1 + (b - a'*x1)*a/norm(a)^2;fprintf(1,'Done! \n');% Solution via QPfprintf(1,'Computing the solution of the QP for the case where a^T*x0 <=b...');cvx_begin variable xs0(n) minimize ( square_pos(norm(xs0 - x0)) ) a'*xs0 <= b;cvx_endfprintf(1,'Done! \n');fprintf(1,'Computing the solution of the QP for the case where a^T*x0 > b...');cvx_begin variable xs1(n) minimize ( square_pos(norm(xs1 - x1)) ) a'*xs1 <= b;cvx_endfprintf(1,'Done! \n');% Verificationdisp('-----------------------------------------------------------------');disp('Verifying that p_C(x0) and x0_star are equal in the case where a^T*x0 <=b');disp(['||p_C(x0) - x0_star|| = ' num2str(norm(xs0 - pc_x0))]);disp('Hence they are equal to working precision');disp('Verifying that p_C(x1) and x1_star are equal in the case where a^T*x1 > b');disp(['||p_C(x1) - x1_star|| = ' num2str(norm(xs1 - pc_x1))]);disp('Hence they are equal to working precision');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -