📄 floor_plan_graphs.m
字号:
% Solve a floor planning problem given graphs H & V% Section 8.8.1/2, Example 8.7, Boyd & Vandenberghe "Convex Optimization"% Joelle Skaf - 11/13/05% (a figure is generated)%% Rectangles aligned with the axes need to be place in the smallest% possible bounding box. No overlap is allowed. Each rectangle to be placed% can be reconfigured, within some limits.% In the current problem, 5 rectangles are to be place. We are given 2% acyclic graphs H and V (for horizontal and vertical) that specify the% relative positioning constraints of those rectangles.% We are also given minimal areas for the rectangles.cvx_quiet(1);% Input datan = 5;% for each entry i, X_tree(i) = parent(i)H_tree = [0 0 1 0 0;... 0 0 1 0 0;... 0 0 0 0 1;... 0 0 0 0 1;... 0 0 0 0 0];V_tree = [0 0 0 1 0;... 1 0 0 0 0;... 0 0 0 1 0;... 0 0 0 0 0;... 0 0 0 0 0];Amin = [100 100 100 100 100; ... 20 50 80 150 200; ... 180 80 80 80 80; ... 20 150 20 200 110];rho = 1; % minimum spacing constraints% solving the problem by calling the general FLOORPLAN routinefor iter = 1:4 A = Amin(iter,:); [W, H, w, h, x, y] = floorplan(H_tree, V_tree, rho, A, 1/5*ones(n,1), 5*ones(n,1)); % Plotting subplot(2,2,iter) for i=1:n fill([x(i); x(i)+w(i); x(i)+w(i); x(i)],[y(i);y(i);y(i)+h(i);y(i)+h(i)],0.90*[1 1 1]); hold on; text(x(i)+w(i)/2, y(i)+h(i)/2,['B',int2str(i)]); end axis([0 W 0 H]); axis equal; axis off;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -