📄 separate_poly_2d.m
字号:
% Section 8.2.2: Separating polyhedra in 2D% Boyd & Vandenberghe "Convex Optimization"% Joelle Skaf - 10/09/05% (a figure is generated)%% If the two polyhedra C = {x | A1*x <= b1} and D = {y | A2*y <= b2} can be% separated by a hyperplane, it will be of the form% z'*x - z'*y >= -lambda'*b1 - mu'*b2 > 0% where z, lambda and mu are the optimal variables of the problem:% maximize -b1'*lambda - b2'*mu% s.t. A1'*lambda + z = 0% A2'*mu - z = 0% norm*(z) <= 1% lambda >=0 , mu >= 0% Note: here x is in R^2% Input datarandn('seed',0);n = 2;m = 2*n;A1 = [1 1; 1 -1; -1 1; -1 -1];A2 = [1 0; -1 0; 0 1; 0 -1];b1 = 2*ones(m,1);b2 = [5; -3; 4; -2];% Solving with CVXfprintf(1,'Finding a separating hyperplane between the 2 polyhedra...');cvx_begin variables lam(m) muu(m) z(n) maximize ( -b1'*lam - b2'*muu) A1'*lam + z == 0; A2'*muu - z == 0; norm(z) <= 1; -lam <=0; -muu <=0;cvx_endfprintf(1,'Done! \n');% Displaying resultsdisp('------------------------------------------------------------------');disp('The distance between the 2 polyhedra C and D is: ' );disp(['dist(C,D) = ' num2str(cvx_optval)]);% Plottingt = linspace(-3,6,100);p = -z(1)*t/z(2) + (muu'*b2 - lam'*b1)/(2*z(2));figure;fill([-2; 0; 2; 0],[0;2;0;-2],'b', [3;5;5;3],[2;2;4;4],'r')axis([-3 6 -3 6])axis squarehold on;plot(t,p)title('Separating 2 polyhedra by a hyperplane');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -