⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix_games_lp.m

📁 斯坦福大学Grant和Boyd教授等开发的凸优化matlab工具箱
💻 M
字号:
% Section 5.2.5: Mixed strategies for matrix games (LP formulation)% Boyd & Vandenberghe, "Convex Optimization"% Jo雔le Skaf - 08/24/05%% Player 1 wishes to choose u to minimize his expected payoff u'Pv, while% player 2 wishes to choose v to maximize u'Pv, where P is the payoff% matrix, u and v are the probability distributions of the choices of each% player (i.e. u>=0, v>=0, sum(u_i)=1, sum(v_i)=1)% LP formulation:   minimize    t%                       s.t.    u >=0 , sum(u) = 1, P'*u <= t*1%                   maximize    t%                       s.t.    v >=0 , sum(v) = 1, P*v >= t*1% Input datarandn('state',0);n = 12;m = 12;P = randn(n,m);% Optimal strategy for Player 1fprintf(1,'Computing the optimal strategy for player 1 ... ');cvx_begin    variables u(n) t1    minimize ( t1 )    u >= 0;    ones(1,n)*u == 1;    P'*u <= t1*ones(m,1);cvx_endfprintf(1,'Done! \n');% Optimal strategy for Player 2fprintf(1,'Computing the optimal strategy for player 2 ... ');cvx_begin    variables v(m) t2    maximize ( t2 )    v >= 0;    ones(1,m)*v == 1;    P*v >= t2*ones(n,1);cvx_endfprintf(1,'Done! \n');% Displaying resultsdisp('------------------------------------------------------------------------');disp('The optimal strategies for players 1 and 2 are respectively: ');disp([u v]);disp('The expected payoffs for player 1 and player 2 respectively are: ');[t1 t2]disp('They are equal as expected!');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -