📄 max_det_psd_completion.m
字号:
% Exercise 4.47: Maximum determinant PSD matrix completion% Boyd & Vandenberghe "Convex Optimization"% Almir Mutapcic - Jan 2006%% Given a symmetric matrix A in R^(n-by-n) with some entries unspecified% we find its completion such that A is positive semidefinite and% it has a maximum determinant out of all possible completions.% This problem can be formulated as a log det (and det_rootn) problem.%% This is a numerical instance of the specified book exercise.% problem sizen = 4;% create and solve the problemcvx_begin sdp % A is a PSD symmetric matrix (n-by-n) variable A(n,n) symmetric; A >= 0; % constrained matrix entries. A(1,1) == 3; A(2,2) == 2; A(3,3) == 1; A(4,4) == 5; % Note that because A is symmetric, these off-diagonal % constraints affect the corresponding element on the % opposite side of the diagonal. A(1,2) == .5; A(1,4) == .25; A(2,3) == .75; % find the solution to the problem maximize( log_det( A ) ) % maximize( det_rootn( A ) )cvx_end% display solutiondisp(['Matrix A with maximum determinant (' num2str(det(A)) ') is:'])Adisp(['Its eigenvalues are:'])eigs = eig(A)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -