📄 chebyshev_center_2d.m
字号:
% Section 4.3.1: Compute and display the Chebyshev center of a 2D polyhedron% Boyd & Vandenberghe, "Convex Optimization"% Jo雔le Skaf - 08/16/05% (a figure is generated)%% The goal is to find the largest Euclidean ball (i.e. its center and% radius) that lies in a polyhedron described by linear inequalites in this% fashion: P = {x : a_i'*x <= b_i, i=1,...,m} where x is in R^2% Generate the input dataa1 = [ 2; 1];a2 = [ 2; -1];a3 = [-1; 2];a4 = [-1; -2];b = ones(4,1);% Create and solve the modelcvx_begin variable r(1) variable x_c(2) maximize ( r ) a1'*x_c + r*norm(a1,2) <= b(1); a2'*x_c + r*norm(a2,2) <= b(2); a3'*x_c + r*norm(a3,2) <= b(3); a4'*x_c + r*norm(a4,2) <= b(4);cvx_end% Generate the figurex = linspace(-2,2);theta = 0:pi/100:2*pi;plot( x, -x*a1(1)./a1(2) + b(1)./a1(2),'b-');hold onplot( x, -x*a2(1)./a2(2) + b(2)./a2(2),'b-');plot( x, -x*a3(1)./a3(2) + b(3)./a3(2),'b-');plot( x, -x*a4(1)./a4(2) + b(4)./a4(2),'b-');plot( x_c(1) + r*cos(theta), x_c(2) + r*sin(theta), 'r');plot(x_c(1),x_c(2),'k+')xlabel('x_1')ylabel('x_2')title('Largest Euclidean ball lying in a 2D polyhedron');axis([-1 1 -1 1])axis equal
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -