📄 counting_problem_poisson.m
字号:
% Section 7.1.1: Counting problems with Poisson distribution % Boyd & Vandenberghe "Convex Optimization" % Joëlle Skaf - 04/24/08 %% The random variable y is nonnegative and integer valued with a Poisson% distribution with mean mu > 0. In a simple statistical model, the mean mu% is modeled as an affine function of a vector u: mu = a'*u + b.% We are given a number of observations which consist of pairs (u_i,y_i), % i = 1,..., m, where y_i is the observed value of y for which the value of% the explanatory variable is u_i. We find a maximum likelihood estimate of% the model parameters a and b from these data by solving the problem % maximize sum_{i=1}^m (y_i*log(a'*u_i + b) - (a'*u_i + b))% where the variables are a and b. % Input datarand('state',0);n = 10; m = 100; atrue = rand(n,1); btrue = rand; u = rand(n,m);mu = atrue'*u + btrue; % Generate random variables y from a Poisson distribution% (The distribution is actually truncated at 10*max(mu) for simplicity)L = exp(-mu);ns = ceil(max(10*mu));y = sum(cumprod(rand(ns,m))>=L(ones(ns,1),:));% Maximum likelihood estimate of model parameters cvx_begin variables a(n) b(1) maximize sum(y.*log(a'*u+b) - (a'*u+b))cvx_end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -