⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ml_covariance_est.m

📁 斯坦福大学Grant和Boyd教授等开发的凸优化matlab工具箱
💻 M
字号:
% Section 7.1.1: Covariance estimation for Gaussian variables% Boyd & Vandenberghe "Convex Optimization" % Joëlle Skaf - 04/24/08 % % Suppose y \in\reals^n is a Gaussian random variable with zero mean and % covariance matrix R = \Expect(yy^T). We want to estimate the covariance % matrix R based on N independent samples y1,...,yN drawn from the % distribution, and using prior knowledge about R (lower and upper bounds % on R) %           L <= R <= U % Let S be R^{-1}. The maximum likelihood (ML) estimate of S is found % by solving the problem %           maximize    logdet(S) - tr(SY) %           subject to  U^{-1} <= S <= L^{-1} % where Y is the sample covariance of y1,...,yN. % Input data randn('state',0);n = 10; N = 1000; tmp = randn(n); L = tmp*tmp'; tmp = randn(n);U = L + tmp*tmp'; R = (L+U)/2; y_sample = sqrtm(R)*randn(n,N); Y = cov(y_sample'); Ui = inv(U); Ui = 0.5*(Ui+Ui');Li = inv(L); Li = 0.5*(Li+Li');% Maximum likelihood estimate of R^{-1} cvx_begin sdp    variable S(n,n) symmetric     maximize( log_det(S) - trace(S*Y) );    S >= Ui;    S <= Li;cvx_endR_hat = inv(S);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -