📄 detector2.m
字号:
% Example 7.4: Binary hypothesis testing% Figure 7.4% Boyd & Vandenberghe "Convex Optimization"% Original version by Lieven Vandenberghe% Updated for CVX by Michael Grant, 2005-12-19% Generate the dataP = [0.70 0.10 0.20 0.10 0.05 0.70 0.05 0.10];[n,m] = size(P);% Construct the tradeoff curve by finding the% the Pareto optimal deterministic detectors,% which are the curve's verticesnopts = 1000;weights = logspace(-5,5,nopts);obj = [0;1];inds = ones(n,1);% minimize -t1'*q1 - w*t2'*q2% s.t. t1+t2 = 1, t1,t2 \geq 0next = 2;for i = 1 : nopts, PW = P * diag( [ 1 ; weights(i) ] ); [ maxvals, maxinds ] = max( PW' ); % max elt in each row if (~isequal(maxinds', inds(:,next-1))) inds(:,next) = maxinds'; T = zeros(m,n); for j=1:n T(maxinds(1,j),j) = 1; end; obj(:,next) = 1-diag(T*P); next = next+1; end;end;plot(obj(1,:), obj(2,:),[0 1], [0 1],'--');grid onfor i=2:size(obj,2)-1 text(obj(1,i),obj(2,i),['a', num2str(i-1)]);end;% Minimax detector: not deterministiccvx_begin variables T( m, n ) D( m, m ) minimize max( D(1,2), D(2,1) ) subject to D == T * P; sum( T, 1 ) == 1; T >= 0;cvx_endobjmp = 1 - diag( D );text( objmp(1), objmp(2), 'b' );xlabel('P_{fp}'); ylabel('P_{fn}');%print -deps roc.eps
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -