⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pid.c

📁 dc servo using dspic30f
💻 C
字号:
/********************************************************************* Description:  pid.c*               This file, 'pid.c', is a single *               Proportional/Integeral/Derivative control loop used
*				for a single axis of position control. It was derived from
*				GPL2'd code by John Kasunich in the EMC2 project.*				Copyright (C) 2003 John Kasunich*               <jmkasunich AT users DOT sourceforge DOT net>* Please do not bother John with support questions for this software.
* Significant changes have been made to support running on a small
* pic 30f2010 processor controlling a single axis servo driver.
* This derived work is also released under GPL 2 and is copy
*/
/*    The three most important components are 'command', 'feedback', and    'output'.  For a position loop, 'command' and 'feedback' are    in position units.  For a linear axis, this could be inches,    mm, metres, or whatever is relavent.  Likewise, for a angular    axis, it could be degrees, radians, etc.  The units of the    'output' pin represent the change needed to make the feedback    match the command.  As such, for a position loop 'Output' is    a velocity, in inches/sec, mm/sec, degrees/sec, etc.    Each loop has several other pins as well.  'error' is equal to    'command' minus 'feedback'.  'enable' is a bit that enables    the loop.  If 'enable' is false, all integrators are reset,    and the output is forced to zero.  If 'enable' is true, the    loop operates normally.    The PID gains, limits, and other 'tunable' features of the    loop are implemented as parameters.  These are as follows:    Pgain	Proportional gain    Igain	Integral gain    Dgain	Derivative gain    bias	Constant offset on output    FF0		Zeroth order Feedforward gain    FF1		First order Feedforward gain    deadband	Amount of error that will be ignored    maxerror	Limit on error    maxerrorI	Limit on error integrator    maxerrorD	Limit on error differentiator    maxcmdD	Limit on command differentiator    maxoutput	Limit on output value    All of the limits (max____) are implemented such that if the    parameter value is zero, there is no limit.    errorI	Integral of error    errorD	Derivative of error    commandD	Derivative of the command    The PID loop calculations are as follows (see the code for    all the nitty gritty details):    error = command - feedback    if ( abs(error) < deadband ) then error = 0    limit error to +/- maxerror    errorI += error * period    limit errorI to +/- maxerrorI    errorD = (error - previouserror) / period    limit errorD to +/- paxerrorD    commandD = (command - previouscommand) / period    limit commandD to +/- maxcmdD    output = bias + error * Pgain + errorI * Igain +             errorD * Dgain + command * FF0 + commandD * FF1    limit output to +/- maxoutput*//** This program is free software; you can redistribute it and/or    modify it under the terms of version 2.1 of the GNU General    Public License as published by the Free Software Foundation.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the    GNU General Public License for more details.    You should have received a copy of the GNU General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111 USA*/#include "dspicservo.h"/************************************************************************                STRUCTURES AND GLOBAL VARIABLES                       *************************************************************************//* our servo loop data variable */struct PID pid;/************************************************************************                  LOCAL FUNCTION DECLARATIONS                         *************************************************************************/void calc_pid(void);void init_pid(void);void init_pid(void){    /* init all structure members */    pid.enable = SVO_ENABLE;		// mirror state of PIN    pid.command = 0.0;    pid.feedback = 0.0;    pid.error = 0.0;    pid.output = 0.0;    pid.deadband = 1.0;    pid.maxerror = 1000.0;    pid.maxerror_i = 0.0;    pid.maxerror_d = 0.0;
    pid.maxcmd_d = 0.0;    pid.error_i = 0.0;    pid.prev_error = 0.0;    pid.error_d = 0.0;    pid.prev_cmd = 0.0;    pid.limit_state = 0;    pid.cmd_d = 0.0;    pid.bias = 0.0;    pid.pgain = 0.005;    pid.igain = 0.0;    pid.dgain = 0.0;    pid.ff0gain = 0.0;    pid.ff1gain = 0.0;    pid.maxoutput = 2.0;		// current in amps
	pid.multiplier = 1;
    pid.ticksperservo = 10;		// 1000us/servo calc}/************************************************************************                   REALTIME PID LOOP CALCULATIONS                     ** 	this code is embedded inside a periodic ISR that defines the servo 
*	loop timing.
*
************************************************************************/void calc_pid( void ){    float tmp1;    int enable;    float periodfp, periodrecip;    long period = pid.ticksperservo * 100000;	/* thread period in ns */

    /* precalculate some timing constants */    periodfp = period * 0.000000001;		// usually .001 sec    periodrecip = 1.0 / periodfp;			// usually 1000.0    /* get the enable bit */    enable = pid.enable;    /* calculate the error */    tmp1 = (float)(pid.command - pid.feedback);    pid.error = tmp1;    /* apply error limits */    if (pid.maxerror != 0.0) 
	{		if (tmp1 > pid.maxerror) 
		{	    	tmp1 = pid.maxerror;		} 
		else if (tmp1 < -pid.maxerror) 
		{	    	tmp1 = -pid.maxerror;		}    }    /* apply the deadband */    if (tmp1 > pid.deadband) 
	{		tmp1 -= pid.deadband;    } 
	else if (tmp1 < -pid.deadband) 
	{		tmp1 += pid.deadband;    }
	else 
	{		tmp1 = 0;    }
    /* do integrator calcs only if enabled */    if (enable != 0) 
	{		/* if output is in limit, don't let integrator wind up */		if ( pid.limit_state == 0 ) 
		{	    	/* compute integral term */	    	pid.error_i += tmp1 * periodfp;		}		/* apply integrator limits */		if (pid.maxerror_i != 0.0) 
		{	    	if (pid.error_i > pid.maxerror_i) 
			{				pid.error_i = pid.maxerror_i;	    	} 
			else if (pid.error_i < -pid.maxerror_i) 
			{				pid.error_i = -pid.maxerror_i;	    	}		}    } 
	else 
	{		/* not enabled, reset integrator */		pid.error_i = 0;    }
    /* calculate derivative term */    pid.error_d = (tmp1 - pid.prev_error) * periodrecip;    pid.prev_error = tmp1;    /* apply derivative limits */    if (pid.maxerror_d != 0.0) 
	{		if (pid.error_d > pid.maxerror_d) 
		{	    	pid.error_d = pid.maxerror_d;		} 
		else if (pid.error_d < -pid.maxerror_d) 
		{	    	pid.error_d = -pid.maxerror_d;		}    }
    /* calculate derivative of command */    pid.cmd_d = (float)(pid.command - pid.prev_cmd) * periodrecip;    pid.prev_cmd = pid.command;
    /* apply derivative limits */    if (pid.maxcmd_d != 0.0) 
	{		if (pid.cmd_d > pid.maxcmd_d) 
		{	    	pid.cmd_d = pid.maxcmd_d;		} 
		else if (pid.cmd_d < -pid.maxcmd_d) 
		{	    	pid.cmd_d = -pid.maxcmd_d;		}    }
    /* do output calcs only if enabled */    if (enable != 0) 
	{		/* calculate the output value */		tmp1 =	    	pid.bias + pid.pgain * tmp1 + 
			pid.igain * pid.error_i +	    	pid.dgain * pid.error_d;		tmp1 += pid.command * pid.ff0gain + pid.cmd_d * pid.ff1gain;		/* apply output limits */		if (pid.maxoutput != 0.0) 
		{	    	if (tmp1 > pid.maxoutput) 
			{				tmp1 = pid.maxoutput;				pid.limit_state = 1;	    	} 
			else if (tmp1 < -pid.maxoutput) 
			{				tmp1 = -pid.maxoutput;				pid.limit_state = 1;	    	} 
			else 
			{				pid.limit_state = 0;	    	}		}    } 
	else 
	{		/* not enabled, force output to zero */		tmp1 = 0.0;		pid.limit_state = 0;    }	
    pid.output = tmp1;
    /* done */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -