📄 setdest2.cc
字号:
/* * a simplified version of setdest which bypass the computation of route length. */extern "C" {#include <assert.h>#include <fcntl.h>#include <math.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <sys/time.h>#include <sys/types.h>#include <sys/uio.h>#include <unistd.h>#if !defined(sun) && !defined(__CYGWIN__)#include <err.h>#endif};#include "../../../rng.h"#include "setdest.h"// #define DEBUG#define SANITY_CHECKS//#define SHOW_SYMMETRIC_PAIRS#define GOD_FORMAT "$ns_ at %.12f \"$god_ set-dist %d %d %d\"\n"#define GOD_FORMAT2 "$god_ set-dist %d %d %d\n"#define NODE_FORMAT "$ns_ at %.12f \"$node_(%d) setdest %.12f %.12f %.12f\"\n"#define NODE_FORMAT2 "$node_(%d) setdest %.12f %.12f %.12f\n"#define NODE_FORMAT3 "$node_(%d) set %c_ %.12f\n"#define INFINITY 0x00ffffff#define min(x,y) ((x) < (y) ? (x) : (y))#define max(x,y) ((x) > (y) ? (x) : (y))#define ROUND_ERROR 1e-9static int count = 0;/* ====================================================================== Function Prototypes ====================================================================== */void usage(char**);void init(void);double uniform(void);void dumpall(void);void ComputeW(void);void floyd_warshall(void);void show_diffs(void);void show_routes(void);void show_counters(void);/* ====================================================================== Global Variables ====================================================================== */const double RANGE = 250.0; // transmitter range in metersdouble TIME = 0.0; // my clock;double MAXTIME = 0.0; // duration of simulationdouble MAXX = 0.0;double MAXY = 0.0;double MAXSPEED = 0.0;double PAUSE = 0.0;u_int32_t NODES = 0;u_int32_t RouteChangeCount = 0;u_int32_t LinkChangeCount = 0;u_int32_t DestUnreachableCount = 0;Node *NodeList = 0;u_int32_t *D1 = 0;u_int32_t *D2 = 0;/* ====================================================================== Random Number Generation ====================================================================== */#define M 2147483647L#define INVERSE_M ((double)4.656612875e-10)char random_state[32];RNG *rng;doubleuniform(){ count++; return rng->uniform_double() ;} /* ====================================================================== Misc Functions... ====================================================================== */voidusage(char **argv){ fprintf(stderr, "\nusage: %s\t-n <nodes> -p <pause time> -s <max speed>\n", argv[0]); fprintf(stderr, "\t\t-t <simulation time> -x <max X> -y <max Y>\n\n");}voidinit(){ /* * Initialized the Random Number Generation */" /*" * Allocate memory for globals */ NodeList = new Node[NODES]; if(NodeList == 0) { perror("new"); exit(1); } D1 = new u_int32_t[NODES * NODES]; if(D1 == 0) { perror("new"); exit(1); } memset(D1, '\xff', sizeof(u_int32_t) * NODES * NODES); D2 = new u_int32_t[NODES * NODES]; if(D2 == 0) { perror("new"); exit(1); } memset(D2, '\xff', sizeof(u_int32_t) * NODES * NODES);}extern "C" char *optarg;intmain(int argc, char **argv){ char ch; while ((ch = getopt(argc, argv, "n:p:s:t:x:y:i:o:")) != EOF) { switch (ch) { case 'n': NODES = atoi(optarg); break; case 'p': PAUSE = atof(optarg); break; case 's': MAXSPEED = atof(optarg); break; case 't': MAXTIME = atof(optarg); break; case 'x': MAXX = atof(optarg); break; case 'y': MAXY = atof(optarg); break; default: usage(argv); exit(1); } } if(MAXX == 0.0 || MAXY == 0.0 || NODES == 0 || MAXTIME == 0.0) { usage(argv); exit(1); } fprintf(stdout, "#\n# nodes: %d, pause: %.2f, max speed: %.2f max x = %.2f, max y: %.2f\n#\n", NODES , PAUSE, MAXSPEED, MAXX, MAXY); // The more portable solution for random number generation rng = new RNG; rng->set_seed(RNG::HEURISTIC_SEED_SOURCE); init(); while(TIME <= MAXTIME) { double nexttime = 0.0; u_int32_t i; for(i = 0; i < NODES; i++) { NodeList[i].Update(); }/* for(i = 0; i < NODES; i++) { NodeList[i].UpdateNeighbors(); }*/ for(i = 0; i < NODES; i++) { Node *n = &NodeList[i]; if(n->time_transition > 0.0) { if(nexttime == 0.0) nexttime = n->time_transition; else nexttime = min(nexttime, n->time_transition); } if(n->time_arrival > 0.0) { if(nexttime == 0.0) nexttime = n->time_arrival; else nexttime = min(nexttime, n->time_arrival); } } // floyd_warshall();#ifdef DEBUG show_routes();#endif // show_diffs();#ifdef DEBUG dumpall();#endif assert(nexttime > TIME + ROUND_ERROR); TIME = nexttime; } show_counters(); int of; if ((of = open(".rand_state",O_WRONLY | O_TRUNC | O_CREAT, 0777)) < 0) { fprintf(stderr, "open rand state\n"); exit(-1); } for (unsigned int i = 0; i < sizeof(random_state); i++) random_state[i] = 0xff & (int) (uniform() * 256); if (write(of,random_state, sizeof(random_state)) < 0) { fprintf(stderr, "writing rand state\n"); exit(-1); } close(of);}/* ====================================================================== Node Class Functions ====================================================================== */u_int32_t Node::NodeIndex = 0;Node::Node(){ u_int32_t i; index = NodeIndex++; //if(index == 0) // return; route_changes = 0; link_changes = 0; /* * For the first PAUSE seconds of the simulation, all nodes * are stationary. */ time_arrival = TIME + PAUSE; time_update = TIME; time_transition = 0.0; position.X = position.Y = position.Z = 0.0; destination.X = destination.Y = destination.Z = 0.0; direction.X = direction.Y = direction.Z = 0.0; speed = 0.0; RandomPosition(); fprintf(stdout, NODE_FORMAT3, index, 'X', position.X); fprintf(stdout, NODE_FORMAT3, index, 'Y', position.Y); fprintf(stdout, NODE_FORMAT3, index, 'Z', position.Z); neighbor = new Neighbor[NODES]; if(neighbor == 0) { perror("new"); exit(1); } for(i = 0; i < NODES; i++) { neighbor[i].index = i; neighbor[i].reachable = (index == i) ? 1 : 0; neighbor[i].time_transition = 0.0; }}voidNode::RandomPosition(){ position.X = uniform() * MAXX; position.Y = uniform() * MAXY; position.Z = 0.0;}voidNode::RandomDestination(){ destination.X = uniform() * MAXX; destination.Y = uniform() * MAXY; destination.Z = 0.0; assert(destination != position);}voidNode::RandomSpeed(){ speed = uniform() * MAXSPEED; assert(speed != 0.0);}voidNode::Update(){ position += (speed * (TIME - time_update)) * direction; if(TIME == time_arrival) { vector v; if(speed == 0.0 || PAUSE == 0.0) { RandomDestination(); RandomSpeed(); v = destination - position; direction = v / v.length(); time_arrival = TIME + v.length() / speed; } else { destination = position; speed = 0.0; time_arrival = TIME + PAUSE; } fprintf(stdout, NODE_FORMAT, TIME, index, destination.X, destination.Y, speed); } time_update = TIME; time_transition = 0.0;}voidNode::UpdateNeighbors(){ static Node *n2; static Neighbor *m1, *m2; static vector D, B, v1, v2; static double a, b, c, t1, t2, Q; static u_int32_t i, reachable; v1 = speed * direction; /* * Only need to go from INDEX --> N for each one since links * are symmetric. */ for(i = index+1; i < NODES; i++) { m1 = &neighbor[i]; n2 = &NodeList[i]; m2 = &n2->neighbor[index]; assert(i == m1->index); assert(m1->index == n2->index); assert(index == m2->index); assert(m1->reachable == m2->reachable); reachable = m1->reachable; /* ================================================== Determine Reachability ================================================== */ { vector d = position - n2->position; if(d.length() < RANGE) {#ifdef SANITY_CHECKS if(TIME > 0.0 && m1->reachable == 0) assert(RANGE - d.length() < ROUND_ERROR);#endif m1->reachable = m2->reachable = 1; } // Boundary condition handled below. else {#ifdef SANITY_CHECKS if(TIME > 0.0 && m1->reachable == 1) assert(d.length() - RANGE < ROUND_ERROR);#endif m1->reachable = m2->reachable = 0; }#ifdef DEBUG fprintf(stdout, "# %.6f (%d, %d) %.2fm\n", TIME, index, m1->index, d.length());#endif } /* ================================================== Determine Next Event Time ================================================== */ v2 = n2->speed * n2->direction; D = v2 - v1; B = n2->position - position; a = (D.X * D.X) + (D.Y * D.Y) + (D.Z * D.Z); b = 2 * ((D.X * B.X) + (D.Y * B.Y) + (D.Z * B.Z)); c = (B.X * B.X) + (B.Y * B.Y) + (B.Z * B.Z) - (RANGE * RANGE); if(a == 0.0) { /* * No Finite Solution */ m1->time_transition= 0.0; m2->time_transition= 0.0; goto next; } Q = b * b - 4 * a * c; if(Q < 0.0) { /* * No real roots. */ m1->time_transition = 0.0; m2->time_transition = 0.0; goto next; } Q = sqrt(Q); t1 = (-b + Q) / (2 * a); t2 = (-b - Q) / (2 * a); // Stupid Rounding/Boundary Cases if(t1 > 0.0 && t1 < ROUND_ERROR) t1 = 0.0; if(t1 < 0.0 && -t1 < ROUND_ERROR) t1 = 0.0; if(t2 > 0.0 && t2 < ROUND_ERROR) t2 = 0.0; if(t2 < 0.0 && -t2 < ROUND_ERROR) t2 = 0.0; if(t1 < 0.0 && t2 < 0.0) { /* * No "future" time solution. */ m1->time_transition = 0.0; m2->time_transition = 0.0; goto next; } /* * Boundary conditions. */ if((t1 == 0.0 && t2 > 0.0) || (t2 == 0.0 && t1 > 0.0)) { m1->reachable = m2->reachable = 1; m1->time_transition = m2->time_transition = TIME + max(t1, t2); } else if((t1 == 0.0 && t2 < 0.0) || (t2 == 0.0 && t1 < 0.0)) { m1->reachable = m2->reachable = 0; m1->time_transition = m2->time_transition = 0.0; } /* * Non-boundary conditions. */ else if(t1 > 0.0 && t2 > 0.0) { m1->time_transition = TIME + min(t1, t2); m2->time_transition = TIME + min(t1, t2); } else if(t1 > 0.0) { m1->time_transition = TIME + t1; m2->time_transition = TIME + t1; } else { m1->time_transition = TIME + t2; m2->time_transition = TIME + t2; } /* ================================================== Update the transition times for both NODEs. ================================================== */ if(time_transition == 0.0 || (m1->time_transition && time_transition > m1->time_transition)) { time_transition = m1->time_transition; } if(n2->time_transition == 0.0 || (m2->time_transition && n2->time_transition > m2->time_transition)) { n2->time_transition = m2->time_transition; } next: if(reachable != m1->reachable && TIME > 0.0) { LinkChangeCount++; link_changes++; n2->link_changes++; } }}voidNode::Dump(){ Neighbor *m; u_int32_t i; fprintf(stdout, "Node: %d\tpos: (%.2f, %.2f, %.2f) dst: (%.2f, %.2f, %.2f)\n", index, position.X, position.Y, position.Z, destination.X, destination.Y, destination.Z); fprintf(stdout, "\tdir: (%.2f, %.2f, %.2f) speed: %.2f\n", direction.X, direction.Y, direction.Z, speed); fprintf(stdout, "\tArrival: %.2f, Update: %.2f, Transition: %.2f\n", time_arrival, time_update, time_transition); for(i = 0; i < NODES; i++) { m = &neighbor[i]; fprintf(stdout, "\tNeighbor: %d (%x), Reachable: %d, Transition Time: %.2f\n", m->index, (int) m, m->reachable, m->time_transition); }}/* ====================================================================== Dijkstra's Shortest Path Algoritm ====================================================================== */void dumpall(){ u_int32_t i; fprintf(stdout, "\nTime: %.2f\n", TIME); for(i = 0; i < NODES; i++) { NodeList[i].Dump(); }}voidComputeW(){ u_int32_t i, j; u_int32_t *W = D2; memset(W, '\xff', sizeof(int) * NODES * NODES); for(i = 0; i < NODES; i++) { for(j = i; j < NODES; j++) { Neighbor *m = &NodeList[i].neighbor[j]; if(i == j) W[i*NODES + j] = W[j*NODES + i] = 0; else W[i*NODES + j] = W[j*NODES + i] = m->reachable ? 1 : INFINITY; } }}voidfloyd_warshall(){ u_int32_t i, j, k; ComputeW(); // the connectivity matrix for(i = 0; i < NODES; i++) { for(j = 0; j < NODES; j++) { for(k = 0; k < NODES; k++) { D2[j*NODES + k] = min(D2[j*NODES + k], D2[j*NODES + i] + D2[i*NODES + k]); } } }#ifdef SANITY_CHECKS for(i = 0; i < NODES; i++) for(j = 0; j < NODES; j++) { assert(D2[i*NODES + j] == D2[j*NODES + i]); assert(D2[i*NODES + j] <= INFINITY); }#endif}/* * Write the actual GOD entries to a TCL script. */voidshow_diffs(){ u_int32_t i, j; for(i = 0; i < NODES; i++) { for(j = i + 1; j < NODES; j++) { if(D1[i*NODES + j] != D2[i*NODES + j]) { if(D2[i*NODES + j] == INFINITY) DestUnreachableCount++; if(TIME > 0.0) { RouteChangeCount++; NodeList[i].route_changes++; NodeList[j].route_changes++; } if(TIME == 0.0) { fprintf(stdout, GOD_FORMAT2, i, j, D2[i*NODES + j]);#ifdef SHOW_SYMMETRIC_PAIRS fprintf(stdout, GOD_FORMAT2, j, i, D2[j*NODES + i]);#endif } else { fprintf(stdout, GOD_FORMAT, TIME, i, j, D2[i*NODES + j]);#ifdef SHOW_SYMMETRIC_PAIRS fprintf(stdout, GOD_FORMAT, TIME, j, i, D2[j*NODES + i]);#endif } } } } memcpy(D1, D2, sizeof(int) * NODES * NODES);}voidshow_routes(){ u_int32_t i, j; fprintf(stdout, "#\n# TIME: %.12f\n#\n", TIME); for(i = 0; i < NODES; i++) { fprintf(stdout, "# %2d) ", i); for(j = 0; j < NODES; j++) fprintf(stdout, "%3d ", D2[i*NODES + j] & 0xff); fprintf(stdout, "\n"); } fprintf(stdout, "#\n");}voidshow_counters(){ u_int32_t i; fprintf(stdout, "#\n# Destination Unreachables: %d\n#\n", DestUnreachableCount); fprintf(stdout, "# Route Changes: %d\n#\n", RouteChangeCount); fprintf(stdout, "# Link Changes: %d\n#\n", LinkChangeCount); fprintf(stdout, "# Node | Route Changes | Link Changes\n"); for(i = 0; i < NODES; i++) fprintf(stdout, "# %4d | %4d | %4d\n", i, NodeList[i].route_changes, NodeList[i].link_changes); fprintf(stdout, "#\n");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -