⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 amf_agclimitercoretable.c

📁 ADI SHARC DSP 音频算法标准模块库
💻 C
字号:
// Copyright(c) 2005 Analog Devices, Inc. All Rights Reserved.
// This software is proprietary and confidential to Analog Devices, Inc. and its licensors.

// File    : $Id: //depot/development/visualaudio/modules/2.5.0/SHARC/Source/AMF_AGCLimiterCore.c#3 $ 
// Part of : VisualAudio V2.5.0 
// Updated : $Date: 2007-08-08 12:37:19 +0530 (Wed, 08 Aug 2007) $ by $Author: kdasari2 $



#include "AMF_AGCLimiterCoreTable.h"
#include "math.h"

void AMF_AGCLimiterCoreTable_Render(AMF_AGCLimiterCoreTable * restrict instance,float * restrict * buffers, int tickSize);

// NOTE: The C version of this function is for reference only (it is
//       intended just to show the general algorithm that the module
//       uses), and it may not have been fully tested
#if 0

void AMF_AGCLimiterCoreTable_Render(AMF_AGCLimiterCoreTable * restrict instance,float * restrict * buffers, int tickSize) {
    int i,j,index,num_points;
    float *in = buffers[0]; 
    float *out = buffers[1];
    float envState = instance->envState;
    float envCoef;
    float attackCoef = instance->attackCoef;
    float decayCoef = instance->decayCoef;
    float *input_levels = instance->inputTable;
    float *output_levels = instance->outputTable;
	float temp,slope,signal;
	
    num_points = instance->Table_points;
    
    /********************************************************* 
	*envelope follower, where filtering coefficient depends on 
    *whether input is increasing or decreasing in amplitude
    *********************************************************/
    
	for(i=0;i<tickSize;i++) 
    {
        signal = in[i];

		/*************************************************
		* Check if attck or decay
		**************************************************/
        if(envState < signal)
        { 
            envCoef = attackCoef;
        }
        else
        {
            envCoef = decayCoef;
        }
           
		/*************************************************
		* one pole filter for envelope detector
		**************************************************/
        signal = envCoef*signal + (1.0-envCoef)*envState;
        envState = signal;
        
		/*************************************************
		* convert env output to log
		**************************************************/
     
        signal = AMF_TranslateVeryFastAmpToDB(signal);

            
 	 	/*******************************************************
		* Check in which range input gain falls in given table
		********************************************************/
       
        index = 0;
		for(j = 0;j< num_points;j++)  // num_point is array size of input and output levels
		{
			if(signal > input_levels[j])
		  	index++;  
		}
		
		
		/* slope for signal which is <= minimum level of the input table */
		if(index == 0)
		{
			if(signal < input_levels[0])
			{
				temp = input_levels[1] - input_levels[0];
				if(temp == 0.0)
				{
					slope = 0.0;
				}
				else
				{
					slope = (output_levels[1] - output_levels[0]) / (input_levels[1] - input_levels[0]);  
				}
				index = 1;
			}
		}
		  
	    /* slope for signal which is >= max level of the input table */
		else if( index == num_points)
		{
			temp = input_levels[num_points -1 ] - input_levels[num_points -2];
			if(temp == 0.0)
			{
				slope = 0.0;
			}
			else
			{
				slope = (output_levels[num_points -1] - output_levels[num_points -2]) / (input_levels[num_points -1] - input_levels[num_points -2]);  
			}
	   	}

	    /* falls under given range of input table, slope = (y2 - y1)/ (x2 - x1) */
	   	else		
		{			
			temp = input_levels[index] - input_levels[index - 1];
			if(temp == 0.0)
			{
			    slope = 0.0;
			}
			else
			{
				slope = (output_levels[index] - output_levels[index-1])/ (input_levels[index ] - input_levels[index - 1]);
			}
		}
		  
		/*************************************************************************
		* Calculate thereshold delta depending on given input range
		**************************************************************************/
	
		temp = output_levels[index-1] + slope*(signal - input_levels[index-1]);
		temp = temp - signal;
               
        signal = temp + instance->gain;

       /*******************************************************************************
	   * Make linear and write in output
	   ********************************************************************************/
       out[i] = AMF_TranslateVeryFastDBToAmp(signal);
		
    }
	instance->envState = envState;
 }

#endif

const AMF_ModuleClass AMFClassAGCLimiterCoreTable = {
    
    /* Flags */
    0,
     
    /* Render function */
    (AMF_RenderFunction) AMF_AGCLimiterCoreTable_Render,  // render function 
    
    /* Default bypass */
    (void *)0,

    /* Input descriptor - 1 input, and it is mono. */
    1, 0,

    /* Output descriptor - 1 output, and it is mono. */
    1, 0,
};

// Class-specific helper functions
#pragma optimize_for_space
float AMF_AGCLimiterCoreTable_TranslateEnvFollowerTimeConst(float timeConstMilliseconds, float samplingRate)
{
    return 1.0-exp(-1.0 / (samplingRate * (0.001*timeConstMilliseconds)));
}

#pragma optimize_for_space
float AMF_AGCLimiterCoreTable_TranslateEnvFollowerT60(float T60Milliseconds, float samplingRate)
{
    return 1.0-pow(10.0, -3.0/(0.001*T60Milliseconds*samplingRate));
}

#pragma optimize_for_space
float AMF_AGCLimiterCoreTable_TranslateSlope(float ratio)
{
    return 1.0 - (1.0 / ratio);
}

#pragma optimize_for_space
float AMF_AGCLimiterCoreTable_TranslateSharpnessFactor (float kneeDepth)
{    
    return 1.0 / kneeDepth;
}






⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -