📄 obmalloc.c
字号:
/* Portions Copyright (c) 2007 Nokia Corporation */
#include "Python.h"
#ifdef WITH_PYMALLOC
#ifdef WITH_DLC
#include "dlc.h"
#endif
/* Python 2.5.1 obmalloc.c used malloc, realloc and free directly.
In general we want to redirect those. */
#define _SYSTEM_MALLOC PyCore_MALLOC_FUNC
#define _SYSTEM_REALLOC PyCore_REALLOC_FUNC
#define _SYSTEM_FREE PyCore_FREE_FUNC
#define _THIS_MALLOC PyCore_OBJECT_MALLOC_FUNC
#define _THIS_REALLOC PyCore_OBJECT_REALLOC_FUNC
#define _THIS_FREE PyCore_OBJECT_FREE_FUNC
/* An object allocator for Python.
Here is an introduction to the layers of the Python memory architecture,
showing where the object allocator is actually used (layer +2), It is
called for every object allocation and deallocation (PyObject_New/Del),
unless the object-specific allocators implement a proprietary allocation
scheme (ex.: ints use a simple free list). This is also the place where
the cyclic garbage collector operates selectively on container objects.
Object-specific allocators
_____ ______ ______ ________
[ int ] [ dict ] [ list ] ... [ string ] Python core |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
_______________________________ | |
[ Python's object allocator ] | |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
______________________________________________________________ |
[ Python's raw memory allocator (PyMem_ API) ] |
+1 | <----- Python memory (under PyMem manager's control) ------> | |
__________________________________________________________________
[ Underlying general-purpose allocator (ex: C library malloc) ]
0 | <------ Virtual memory allocated for the python process -------> |
=========================================================================
_______________________________________________________________________
[ OS-specific Virtual Memory Manager (VMM) ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
__________________________________ __________________________________
[ ] [ ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
*/
/*==========================================================================*/
/* A fast, special-purpose memory allocator for small blocks, to be used
on top of a general-purpose malloc -- heavily based on previous art. */
/* Vladimir Marangozov -- August 2000 */
/*
* "Memory management is where the rubber meets the road -- if we do the wrong
* thing at any level, the results will not be good. And if we don't make the
* levels work well together, we are in serious trouble." (1)
*
* (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
* "Dynamic Storage Allocation: A Survey and Critical Review",
* in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
*/
/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
/*==========================================================================*/
/*
* Allocation strategy abstract:
*
* For small requests, the allocator sub-allocates <Big> blocks of memory.
* Requests greater than 256 bytes are routed to the system's allocator.
*
* Small requests are grouped in size classes spaced 8 bytes apart, due
* to the required valid alignment of the returned address. Requests of
* a particular size are serviced from memory pools of 4K (one VMM page).
* Pools are fragmented on demand and contain free lists of blocks of one
* particular size class. In other words, there is a fixed-size allocator
* for each size class. Free pools are shared by the different allocators
* thus minimizing the space reserved for a particular size class.
*
* This allocation strategy is a variant of what is known as "simple
* segregated storage based on array of free lists". The main drawback of
* simple segregated storage is that we might end up with lot of reserved
* memory for the different free lists, which degenerate in time. To avoid
* this, we partition each free list in pools and we share dynamically the
* reserved space between all free lists. This technique is quite efficient
* for memory intensive programs which allocate mainly small-sized blocks.
*
* For small requests we have the following table:
*
* Request in bytes Size of allocated block Size class idx
* ----------------------------------------------------------------
* 1-8 8 0
* 9-16 16 1
* 17-24 24 2
* 25-32 32 3
* 33-40 40 4
* 41-48 48 5
* 49-56 56 6
* 57-64 64 7
* 65-72 72 8
* ... ... ...
* 241-248 248 30
* 249-256 256 31
*
* 0, 257 and up: routed to the underlying allocator.
*/
/*==========================================================================*/
/*
* -- Main tunable settings section --
*/
/*
* Alignment of addresses returned to the user. 8-bytes alignment works
* on most current architectures (with 32-bit or 64-bit address busses).
* The alignment value is also used for grouping small requests in size
* classes spaced ALIGNMENT bytes apart.
*
* You shouldn't change this unless you know what you are doing.
*/
#define ALIGNMENT 8 /* must be 2^N */
#define ALIGNMENT_SHIFT 3
#define ALIGNMENT_MASK (ALIGNMENT - 1)
/* Return the number of bytes in size class I, as a uint. */
#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
/*
* Max size threshold below which malloc requests are considered to be
* small enough in order to use preallocated memory pools. You can tune
* this value according to your application behaviour and memory needs.
*
* The following invariants must hold:
* 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
* 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
*
* Although not required, for better performance and space efficiency,
* it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
*/
#define SMALL_REQUEST_THRESHOLD 256
#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
/*
* The system's VMM page size can be obtained on most unices with a
* getpagesize() call or deduced from various header files. To make
* things simpler, we assume that it is 4K, which is OK for most systems.
* It is probably better if this is the native page size, but it doesn't
* have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
* size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
* violation fault. 4K is apparently OK for all the platforms that python
* currently targets.
*/
#define SYSTEM_PAGE_SIZE (4 * 1024)
#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
/*
* Maximum amount of memory managed by the allocator for small requests.
*/
#ifdef WITH_MEMORY_LIMITS
#ifndef SMALL_MEMORY_LIMIT
#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
#endif
#endif
/*
* The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
* on a page boundary. This is a reserved virtual address space for the
* current process (obtained through a malloc call). In no way this means
* that the memory arenas will be used entirely. A malloc(<Big>) is usually
* an address range reservation for <Big> bytes, unless all pages within this
* space are referenced subsequently. So malloc'ing big blocks and not using
* them does not mean "wasting memory". It's an addressable range wastage...
*
* Therefore, allocating arenas with malloc is not optimal, because there is
* some address space wastage, but this is the most portable way to request
* memory from the system across various platforms.
*/
/* XXX: tune this to be optimal */
/* Using 64 kB arena size for now. NOTE: This MUST be the same as DLC_BLOCK_SIZE when DLC is in use! */
#define ARENA_SIZE (64 << 10) /* 64KB */
#ifdef WITH_DLC
#if ARENA_SIZE != DLC_BLOCK_SIZE
#error DLC block != arena size !
#endif
#endif
//#define ARENA_SIZE (256 << 10) /* 256KB */
#ifdef WITH_MEMORY_LIMITS
#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
#endif
/*
* Size of the pools used for small blocks. Should be a power of 2,
* between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
*/
#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
/*
* -- End of tunable settings section --
*/
/*==========================================================================*/
/*
* Locking
*
* To reduce lock contention, it would probably be better to refine the
* crude function locking with per size class locking. I'm not positive
* however, whether it's worth switching to such locking policy because
* of the performance penalty it might introduce.
*
* The following macros describe the simplest (should also be the fastest)
* lock object on a particular platform and the init/fini/lock/unlock
* operations on it. The locks defined here are not expected to be recursive
* because it is assumed that they will always be called in the order:
* INIT, [LOCK, UNLOCK]*, FINI.
*/
/*
* Python's threads are serialized, so object malloc locking is disabled.
*/
#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
/*
* Basic types
* I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
*/
#undef uchar
#define uchar unsigned char /* assuming == 8 bits */
#undef uint
#define uint unsigned int /* assuming >= 16 bits */
#undef ulong
#define ulong unsigned long /* assuming >= 32 bits */
#undef uptr
#define uptr Py_uintptr_t
/* When you say memory, my mind reasons in terms of (pointers to) blocks */
typedef uchar block;
/* Pool for small blocks. */
struct pool_header {
union { block *_padding;
uint count; } ref; /* number of allocated blocks */
block *freeblock; /* pool's free list head */
struct pool_header *nextpool; /* next pool of this size class */
struct pool_header *prevpool; /* previous pool "" */
uint arenaindex; /* index into arenas of base adr */
uint szidx; /* block size class index */
uint nextoffset; /* bytes to virgin block */
uint maxnextoffset; /* largest valid nextoffset */
};
typedef struct pool_header *poolp;
/* Record keeping for arenas. */
struct arena_object {
/* The address of the arena, as returned by malloc. Note that 0
* will never be returned by a successful malloc, and is used
* here to mark an arena_object that doesn't correspond to an
* allocated arena.
*/
uptr address;
/* Pool-aligned pointer to the next pool to be carved off. */
block* pool_address;
/* The number of available pools in the arena: free pools + never-
* allocated pools.
*/
uint nfreepools;
/* The total number of pools in the arena, whether or not available. */
uint ntotalpools;
/* Singly-linked list of available pools. */
struct pool_header* freepools;
/* Whenever this arena_object is not associated with an allocated
* arena, the nextarena member is used to link all unassociated
* arena_objects in the singly-linked `unused_arena_objects` list.
* The prevarena member is unused in this case.
*
* When this arena_object is associated with an allocated arena
* with at least one available pool, both members are used in the
* doubly-linked `usable_arenas` list, which is maintained in
* increasing order of `nfreepools` values.
*
* Else this arena_object is associated with an allocated arena
* all of whose pools are in use. `nextarena` and `prevarena`
* are both meaningless in this case.
*/
struct arena_object* nextarena;
struct arena_object* prevarena;
};
#undef ROUNDUP
#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
/* Return total number of blocks in pool of size index I, as a uint. */
#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
/*==========================================================================*/
/*
* This malloc lock
*/
SIMPLELOCK_DECL(_malloc_lock)
#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
/*
* Pool table -- headed, circular, doubly-linked lists of partially used pools.
This is involved. For an index i, usedpools[i+i] is the header for a list of
all partially used pools holding small blocks with "size class idx" i. So
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
Pools are carved off an arena's highwater mark (an arena_object's pool_address
member) as needed. Once carved off, a pool is in one of three states forever
after:
used == partially used, neither empty nor full
At least one block in the pool is currently allocated, and at least one
block in the pool is not currently allocated (note this implies a pool
has room for at least two blocks).
This is a pool's initial state, as a pool is created only when malloc
needs space.
The pool holds blocks of a fixed size, and is in the circular list headed
at usedpools[i] (see above). It's linked to the other used pools of the
same size class via the pool_header's nextpool and prevpool members.
If all but one block is currently allocated, a malloc can cause a
transition to the full state. If all but one block is not currently
allocated, a free can cause a transition to the empty state.
full == all the pool's blocks are currently allocated
On transition to full, a pool is unlinked from its usedpools[] list.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -