⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 listobject.c

📁 python s60 1.4.5版本的源代码
💻 C
📖 第 1 页 / 共 4 页
字号:
   would slow things down.
*/

struct SamplesortStackNode {
	/* Represents a slice of the array, from (& including) lo up
	   to (but excluding) hi.  "extra" additional & adjacent elements
	   are pre-selected pivots (PPs), spanning [lo-extra, lo) if
	   extra > 0, or [hi, hi-extra) if extra < 0.  The PPs are
	   already sorted, but nothing is known about the other elements
	   in [lo, hi). |extra| is always one less than a power of 2.
	   When extra is 0, we're out of PPs, and the slice must be
	   sorted by some other means. */
	PyObject **lo;
	PyObject **hi;
	int extra;
};

/* The number of PPs we want is 2**k - 1, where 2**k is as close to
   N / ln(N) as possible.  So k ~= lg(N / ln(N)).  Calling libm routines
   is undesirable, so cutoff values are canned in the "cutoff" table
   below:  cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
#define CUTOFFBASE 4
const static long cutoff[] = {
	43,        /* smallest N such that k == 4 */
	106,       /* etc */
	250,
	576,
	1298,
	2885,
	6339,
	13805,
	29843,
	64116,
	137030,
	291554,
	617916,
	1305130,
	2748295,
	5771662,
	12091672,
	25276798,
	52734615,
	109820537,
	228324027,
	473977813,
	982548444,   /* smallest N such that k == 26 */
	2034159050   /* largest N that fits in signed 32-bit; k == 27 */
};

static int
samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
     /* compare -- comparison function object, or NULL for default */
{
	register PyObject **l, **r;
	register PyObject *tmp, *pivot;
	register int k;
	int n, extra, top, extraOnRight;
	struct SamplesortStackNode stack[STACKSIZE];

	/* assert lo <= hi */
	n = hi - lo;

	/* ----------------------------------------------------------
	 * Special cases
	 * --------------------------------------------------------*/
	if (n < 2)
		return 0;

	/* Set r to the largest value such that [lo,r) is sorted.
	   This catches the already-sorted case, the all-the-same
	   case, and the appended-a-few-elements-to-a-sorted-list case.
	   If the array is unsorted, we're very likely to get out of
	   the loop fast, so the test is cheap if it doesn't pay off.
	*/
	/* assert lo < hi */
	for (r = lo+1; r < hi; ++r) {
		SETK(*r, *(r-1));
		if (k < 0)
			break;
	}
	/* [lo,r) is sorted, [r,hi) unknown.  Get out cheap if there are
	   few unknowns, or few elements in total. */
	if (hi - r <= MAXMERGE || n < MINSIZE)
		return binarysort(lo, hi, r, compare);

	/* Check for the array already being reverse-sorted.  Typical
	   benchmark-driven silliness <wink>. */
	/* assert lo < hi */
	for (r = lo+1; r < hi; ++r) {
		SETK(*(r-1), *r);
		if (k < 0)
			break;
	}
	if (hi - r <= MAXMERGE) {
		/* Reverse the reversed prefix, then insert the tail */
		PyObject **originalr = r;
		l = lo;
		do {
			--r;
			tmp = *l; *l = *r; *r = tmp;
			++l;
		} while (l < r);
		return binarysort(lo, hi, originalr, compare);
	}

	/* ----------------------------------------------------------
	 * Normal case setup: a large array without obvious pattern.
	 * --------------------------------------------------------*/

	/* extra := a power of 2 ~= n/ln(n), less 1.
	   First find the smallest extra s.t. n < cutoff[extra] */
	for (extra = 0;
	     extra < sizeof(cutoff) / sizeof(cutoff[0]);
	     ++extra) {
		if (n < cutoff[extra])
			break;
		/* note that if we fall out of the loop, the value of
		   extra still makes *sense*, but may be smaller than
		   we would like (but the array has more than ~= 2**31
		   elements in this case!) */
	}
	/* Now k == extra - 1 + CUTOFFBASE.  The smallest value k can
	   have is CUTOFFBASE-1, so
	   assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
	extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
	/* assert extra > 0 and n >= extra */

	/* Swap that many values to the start of the array.  The
	   selection of elements is pseudo-random, but the same on
	   every run (this is intentional! timing algorithm changes is
	   a pain if timing varies across runs).  */
	{
		unsigned int seed = n / extra;  /* arbitrary */
		unsigned int i;
		for (i = 0; i < (unsigned)extra; ++i) {
			/* j := random int in [i, n) */
			unsigned int j;
			seed = seed * 69069 + 7;
			j = i + seed % (n - i);
			tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
		}
	}

	/* Recursively sort the preselected pivots. */
	if (samplesortslice(lo, lo + extra, compare) < 0)
		goto fail;

	top = 0;          /* index of available stack slot */
	lo += extra;      /* point to first unknown */
	extraOnRight = 0; /* the PPs are at the left end */

	/* ----------------------------------------------------------
	 * Partition [lo, hi), and repeat until out of work.
	 * --------------------------------------------------------*/
	for (;;) {
		/* assert lo <= hi, so n >= 0 */
		n = hi - lo;

		/* We may not want, or may not be able, to partition:
		   If n is small, it's quicker to insert.
		   If extra is 0, we're out of pivots, and *must* use
		   another method.
		*/
		if (n < MINPARTITIONSIZE || extra == 0) {
			if (n >= MINSIZE) {
				/* assert extra == 0
				   This is rare, since the average size
				   of a final block is only about
				   ln(original n). */
				if (samplesortslice(lo, hi, compare) < 0)
					goto fail;
			}
			else {
				/* Binary insertion should be quicker,
				   and we can take advantage of the PPs
				   already being sorted. */
				if (extraOnRight && extra) {
					/* swap the PPs to the left end */
					k = extra;
					do {
						tmp = *lo;
						*lo = *hi;
						*hi = tmp;
						++lo; ++hi;
					} while (--k);
				}
				if (binarysort(lo - extra, hi, lo,
					       compare) < 0)
					goto fail;
			}

			/* Find another slice to work on. */
			if (--top < 0)
				break;   /* no more -- done! */
			lo = stack[top].lo;
			hi = stack[top].hi;
			extra = stack[top].extra;
			extraOnRight = 0;
			if (extra < 0) {
				extraOnRight = 1;
				extra = -extra;
			}
			continue;
		}

		/* Pretend the PPs are indexed 0, 1, ..., extra-1.
		   Then our preselected pivot is at (extra-1)/2, and we
		   want to move the PPs before that to the left end of
		   the slice, and the PPs after that to the right end.
		   The following section changes extra, lo, hi, and the
		   slice such that:
		   [lo-extra, lo) contains the smaller PPs.
		   *lo == our PP.
		   (lo, hi) contains the unknown elements.
		   [hi, hi+extra) contains the larger PPs.
		*/
		k = extra >>= 1;  /* num PPs to move */
		if (extraOnRight) {
			/* Swap the smaller PPs to the left end.
			   Note that this loop actually moves k+1 items:
			   the last is our PP */
			do {
				tmp = *lo; *lo = *hi; *hi = tmp;
				++lo; ++hi;
			} while (k--);
		}
		else {
			/* Swap the larger PPs to the right end. */
			while (k--) {
				--lo; --hi;
				tmp = *lo; *lo = *hi; *hi = tmp;
			}
		}
		--lo;   /* *lo is now our PP */
		pivot = *lo;

		/* Now an almost-ordinary quicksort partition step.
		   Note that most of the time is spent here!
		   Only odd thing is that we partition into < and >=,
		   instead of the usual <= and >=.  This helps when
		   there are lots of duplicates of different values,
		   because it eventually tends to make subfiles
		   "pure" (all duplicates), and we special-case for
		   duplicates later. */
		l = lo + 1;
		r = hi - 1;
		/* assert lo < l < r < hi (small n weeded out above) */

		do {
			/* slide l right, looking for key >= pivot */
			do {
				SETK(*l, pivot);
				if (k < 0)
					++l;
				else
					break;
			} while (l < r);

			/* slide r left, looking for key < pivot */
			while (l < r) {
				register PyObject *rval = *r--;
				SETK(rval, pivot);
				if (k < 0) {
					/* swap and advance */
					r[1] = *l;
					*l++ = rval;
					break;
				}
			}

		} while (l < r);

		/* assert lo < r <= l < hi
		   assert r == l or r+1 == l
		   everything to the left of l is < pivot, and
		   everything to the right of r is >= pivot */

		if (l == r) {
			SETK(*r, pivot);
			if (k < 0)
				++l;
			else
				--r;
		}
		/* assert lo <= r and r+1 == l and l <= hi
		   assert r == lo or a[r] < pivot
		   assert a[lo] is pivot
		   assert l == hi or a[l] >= pivot
		   Swap the pivot into "the middle", so we can henceforth
		   ignore it.
		*/
		*lo = *r;
		*r = pivot;

		/* The following is true now, & will be preserved:
		   All in [lo,r) are < pivot
		   All in [r,l) == pivot (& so can be ignored)
		   All in [l,hi) are >= pivot */

		/* Check for duplicates of the pivot.  One compare is
		   wasted if there are no duplicates, but can win big
		   when there are.
		   Tricky: we're sticking to "<" compares, so deduce
		   equality indirectly.  We know pivot <= *l, so they're
		   equal iff not pivot < *l.
		*/
		while (l < hi) {
			/* pivot <= *l known */
			SETK(pivot, *l);
			if (k < 0)
				break;
			else
				/* <= and not < implies == */
				++l;
		}

		/* assert lo <= r < l <= hi
		   Partitions are [lo, r) and [l, hi) */

		/* push fattest first; remember we still have extra PPs
		   to the left of the left chunk and to the right of
		   the right chunk! */
		/* assert top < STACKSIZE */
		if (r - lo <= hi - l) {
			/* second is bigger */
			stack[top].lo = l;
			stack[top].hi = hi;
			stack[top].extra = -extra;
			hi = r;
			extraOnRight = 0;
		}
		else {
			/* first is bigger */
			stack[top].lo = lo;
			stack[top].hi = r;
			stack[top].extra = extra;
			lo = l;
			extraOnRight = 1;
		}
		++top;

	}   /* end of partitioning loop */

	return 0;

 fail:
	return -1;
}

#undef SETK

#ifndef SYMBIAN
staticforward PyTypeObject immutable_list_type;
#endif

static PyObject *
listsort(PyListObject *self, PyObject *args)
{
	int err;
	PyObject *compare = NULL;
	PyTypeObject *savetype;

	if (args != NULL) {
		if (!PyArg_ParseTuple(args, "|O:sort", &compare))
			return NULL;
	}
	savetype = self->ob_type;
	self->ob_type = &immutable_list_type;
	err = samplesortslice(self->ob_item,
			      self->ob_item + self->ob_size,
			      compare);
	self->ob_type = savetype;
	if (err < 0)
		return NULL;
	Py_INCREF(Py_None);
	return Py_None;
}

DL_EXPORT(int)
PyList_Sort(PyObject *v)
{
	if (v == NULL || !PyList_Check(v)) {
		PyErr_BadInternalCall();
		return -1;
	}
	v = listsort((PyListObject *)v, (PyObject *)NULL);
	if (v == NULL)
		return -1;
	Py_DECREF(v);
	return 0;
}

static void
_listreverse(PyListObject *self)
{
	register PyObject **p, **q;
	register PyObject *tmp;

	if (self->ob_size > 1) {
		for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
		     p < q;
		     p++, q--)
		{
			tmp = *p;
			*p = *q;
			*q = tmp;
		}
	}
}

static PyObject *
listreverse(PyListObject *self)
{
	_listreverse(self);
	Py_INCREF(Py_None);
	return Py_None;
}

DL_EXPORT(int)
PyList_Reverse(PyObject *v)
{
	if (v == NULL || !PyList_Check(v)) {
		PyErr_BadInternalCall();
		return -1;
	}
	_listreverse((PyListObject *)v);
	return 0;
}

DL_EXPORT(PyObject *)
PyList_AsTuple(PyObject *v)
{
	PyObject *w;
	PyObject **p;
	int n;
	if (v == NULL || !PyList_Check(v)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	n = ((PyListObject *)v)->ob_size;
	w = PyTuple_New(n);
	if (w == NULL)
		return NULL;
	p = ((PyTupleObject *)w)->ob_item;
	memcpy((void *)p,
	       (void *)((PyListObject *)v)->ob_item,
	       n*sizeof(PyObject *));
	while (--n >= 0) {
		Py_INCREF(*p);
		p++;
	}
	return w;
}

static PyObject *
listindex(PyListObject *self, PyObject *v)
{
	int i;

	for (i = 0; i < self->ob_size; i++) {
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
		if (cmp > 0)
			return PyInt_FromLong((long)i);
		else if (cmp < 0)
			return NULL;
	}
	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
	return NULL;
}

static PyObject *
listcount(PyListObject *self, PyObject *v)
{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -