📄 listobject.c
字号:
if (v == NULL)
n = 0;
else if (PyList_Check(v)) {
n = b->ob_size;
if (a == b) {
/* Special case "a[i:j] = a" -- copy b first */
int ret;
v = list_slice(b, 0, n);
ret = list_ass_slice(a, ilow, ihigh, v);
Py_DECREF(v);
return ret;
}
}
else {
PyErr_Format(PyExc_TypeError,
"must assign list (not \"%.200s\") to slice",
v->ob_type->tp_name);
return -1;
}
if (ilow < 0)
ilow = 0;
else if (ilow > a->ob_size)
ilow = a->ob_size;
if (ihigh < ilow)
ihigh = ilow;
else if (ihigh > a->ob_size)
ihigh = a->ob_size;
item = a->ob_item;
d = n - (ihigh-ilow);
if (ihigh > ilow)
p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
else
p = recycle = NULL;
if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
for (k = ilow; k < ihigh; k++)
*p++ = item[k];
if (d < 0) {
for (/*k = ihigh*/; k < a->ob_size; k++)
item[k+d] = item[k];
a->ob_size += d;
NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
a->ob_item = item;
}
}
else { /* Insert d items; recycle ihigh-ilow items */
NRESIZE(item, PyObject *, a->ob_size + d);
if (item == NULL) {
if (recycle != NULL)
PyMem_DEL(recycle);
PyErr_NoMemory();
return -1;
}
for (k = a->ob_size; --k >= ihigh; )
item[k+d] = item[k];
for (/*k = ihigh-1*/; k >= ilow; --k)
*p++ = item[k];
a->ob_item = item;
a->ob_size += d;
}
for (k = 0; k < n; k++, ilow++) {
PyObject *w = b->ob_item[k];
Py_XINCREF(w);
item[ilow] = w;
}
if (recycle) {
while (--p >= recycle)
Py_XDECREF(*p);
PyMem_DEL(recycle);
}
if (a->ob_size == 0 && a->ob_item != NULL) {
PyMem_FREE(a->ob_item);
a->ob_item = NULL;
}
return 0;
#undef b
}
DL_EXPORT(int)
PyList_SetSlice(PyObject *a, int ilow, int ihigh, PyObject *v)
{
if (!PyList_Check(a)) {
PyErr_BadInternalCall();
return -1;
}
return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
}
static PyObject *
list_inplace_repeat(PyListObject *self, int n)
{
PyObject **items;
int size, i, j;
size = PyList_GET_SIZE(self);
if (size == 0) {
Py_INCREF(self);
return (PyObject *)self;
}
items = self->ob_item;
if (n < 1) {
self->ob_item = NULL;
self->ob_size = 0;
for (i = 0; i < size; i++)
Py_XDECREF(items[i]);
PyMem_DEL(items);
Py_INCREF(self);
return (PyObject *)self;
}
NRESIZE(items, PyObject*, size*n);
if (items == NULL) {
PyErr_NoMemory();
goto finally;
}
self->ob_item = items;
for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
for (j = 0; j < size; j++) {
PyObject *o = PyList_GET_ITEM(self, j);
Py_INCREF(o);
PyList_SET_ITEM(self, self->ob_size++, o);
}
}
Py_INCREF(self);
return (PyObject *)self;
finally:
return NULL;
}
static int
list_ass_item(PyListObject *a, int i, PyObject *v)
{
PyObject *old_value;
if (i < 0 || i >= a->ob_size) {
PyErr_SetString(PyExc_IndexError,
"list assignment index out of range");
return -1;
}
if (v == NULL)
return list_ass_slice(a, i, i+1, v);
Py_INCREF(v);
old_value = a->ob_item[i];
a->ob_item[i] = v;
Py_DECREF(old_value);
return 0;
}
static PyObject *
ins(PyListObject *self, int where, PyObject *v)
{
if (ins1(self, where, v) != 0)
return NULL;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
listinsert(PyListObject *self, PyObject *args)
{
int i;
PyObject *v;
if (!PyArg_ParseTuple(args, "iO:insert", &i, &v))
return NULL;
return ins(self, i, v);
}
static PyObject *
listappend(PyListObject *self, PyObject *v)
{
return ins(self, (int) self->ob_size, v);
}
static int
listextend_internal(PyListObject *self, PyObject *b)
{
PyObject **items;
int selflen = PyList_GET_SIZE(self);
int blen;
register int i;
if (PyObject_Size(b) == 0) {
/* short circuit when b is empty */
Py_DECREF(b);
return 0;
}
if (self == (PyListObject*)b) {
/* as in list_ass_slice() we must special case the
* situation: a.extend(a)
*
* XXX: I think this way ought to be faster than using
* list_slice() the way list_ass_slice() does.
*/
Py_DECREF(b);
b = PyList_New(selflen);
if (!b)
return -1;
for (i = 0; i < selflen; i++) {
PyObject *o = PyList_GET_ITEM(self, i);
Py_INCREF(o);
PyList_SET_ITEM(b, i, o);
}
}
blen = PyObject_Size(b);
/* resize a using idiom */
items = self->ob_item;
NRESIZE(items, PyObject*, selflen + blen);
if (items == NULL) {
PyErr_NoMemory();
Py_DECREF(b);
return -1;
}
self->ob_item = items;
/* populate the end of self with b's items */
for (i = 0; i < blen; i++) {
PyObject *o = PySequence_Fast_GET_ITEM(b, i);
Py_INCREF(o);
PyList_SET_ITEM(self, self->ob_size++, o);
}
Py_DECREF(b);
return 0;
}
static PyObject *
list_inplace_concat(PyListObject *self, PyObject *other)
{
other = PySequence_Fast(other, "argument to += must be iterable");
if (!other)
return NULL;
if (listextend_internal(self, other) < 0)
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
static PyObject *
listextend(PyListObject *self, PyObject *b)
{
b = PySequence_Fast(b, "list.extend() argument must be iterable");
if (!b)
return NULL;
if (listextend_internal(self, b) < 0)
return NULL;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
listpop(PyListObject *self, PyObject *args)
{
int i = -1;
PyObject *v;
if (!PyArg_ParseTuple(args, "|i:pop", &i))
return NULL;
if (self->ob_size == 0) {
/* Special-case most common failure cause */
PyErr_SetString(PyExc_IndexError, "pop from empty list");
return NULL;
}
if (i < 0)
i += self->ob_size;
if (i < 0 || i >= self->ob_size) {
PyErr_SetString(PyExc_IndexError, "pop index out of range");
return NULL;
}
v = self->ob_item[i];
Py_INCREF(v);
if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
Py_DECREF(v);
return NULL;
}
return v;
}
/* New quicksort implementation for arrays of object pointers.
Thanks to discussions with Tim Peters. */
/* CMPERROR is returned by our comparison function when an error
occurred. This is the largest negative integer (0x80000000 on a
32-bit system). */
#define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )
/* Comparison function. Takes care of calling a user-supplied
comparison function (any callable Python object). Calls the
standard comparison function, PyObject_Compare(), if the user-
supplied function is NULL. */
static int
docompare(PyObject *x, PyObject *y, PyObject *compare)
{
PyObject *args, *res;
int i;
if (compare == NULL) {
/* NOTE: we rely on the fact here that the sorting algorithm
only ever checks whether k<0, i.e., whether x<y. So we
invoke the rich comparison function with Py_LT ('<'), and
return -1 when it returns true and 0 when it returns
false. */
i = PyObject_RichCompareBool(x, y, Py_LT);
if (i < 0)
return CMPERROR;
else
return -i;
}
args = Py_BuildValue("(OO)", x, y);
if (args == NULL)
return CMPERROR;
res = PyEval_CallObject(compare, args);
Py_DECREF(args);
if (res == NULL)
return CMPERROR;
if (!PyInt_Check(res)) {
Py_DECREF(res);
PyErr_SetString(PyExc_TypeError,
"comparison function must return int");
return CMPERROR;
}
i = PyInt_AsLong(res);
Py_DECREF(res);
if (i < 0)
return -1;
if (i > 0)
return 1;
return 0;
}
/* MINSIZE is the smallest array that will get a full-blown samplesort
treatment; smaller arrays are sorted using binary insertion. It must
be at least 7 for the samplesort implementation to work. Binary
insertion does fewer compares, but can suffer O(N**2) data movement.
The more expensive compares, the larger MINSIZE should be. */
#define MINSIZE 100
/* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
partition; smaller slices are passed to binarysort. It must be at
least 2, and no larger than MINSIZE. Setting it higher reduces the #
of compares slowly, but increases the amount of data movement quickly.
The value here was chosen assuming a compare costs ~25x more than
swapping a pair of memory-resident pointers -- but under that assumption,
changing the value by a few dozen more or less has aggregate effect
under 1%. So the value is crucial, but not touchy <wink>. */
#define MINPARTITIONSIZE 40
/* MAXMERGE is the largest number of elements we'll always merge into
a known-to-be sorted chunk via binary insertion, regardless of the
size of that chunk. Given a chunk of N sorted elements, and a group
of K unknowns, the largest K for which it's better to do insertion
(than a full-blown sort) is a complicated function of N and K mostly
involving the expected number of compares and data moves under each
approach, and the relative cost of those operations on a specific
architecure. The fixed value here is conservative, and should be a
clear win regardless of architecture or N. */
#define MAXMERGE 15
/* STACKSIZE is the size of our work stack. A rough estimate is that
this allows us to sort arrays of size N where
N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
for arrays of size 2**64. Because we push the biggest partition
first, the worst case occurs when all subarrays are always partitioned
exactly in two. */
#define STACKSIZE 60
#define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail
/* binarysort is the best method for sorting small arrays: it does
few compares, but can do data movement quadratic in the number of
elements.
[lo, hi) is a contiguous slice of a list, and is sorted via
binary insertion.
On entry, must have lo <= start <= hi, and that [lo, start) is already
sorted (pass start == lo if you don't know!).
If docompare complains (returns CMPERROR) return -1, else 0.
Even in case of error, the output slice will be some permutation of
the input (nothing is lost or duplicated).
*/
static int
binarysort(PyObject **lo, PyObject **hi, PyObject **start, PyObject *compare)
/* compare -- comparison function object, or NULL for default */
{
/* assert lo <= start <= hi
assert [lo, start) is sorted */
register int k;
register PyObject **l, **p, **r;
register PyObject *pivot;
if (lo == start)
++start;
for (; start < hi; ++start) {
/* set l to where *start belongs */
l = lo;
r = start;
pivot = *r;
do {
p = l + ((r - l) >> 1);
SETK(pivot, *p);
if (k < 0)
r = p;
else
l = p + 1;
} while (l < r);
/* Pivot should go at l -- slide over to make room.
Caution: using memmove is much slower under MSVC 5;
we're not usually moving many slots. */
for (p = start; p > l; --p)
*p = *(p-1);
*l = pivot;
}
return 0;
fail:
return -1;
}
/* samplesortslice is the sorting workhorse.
[lo, hi) is a contiguous slice of a list, to be sorted in place.
On entry, must have lo <= hi,
If docompare complains (returns CMPERROR) return -1, else 0.
Even in case of error, the output slice will be some permutation of
the input (nothing is lost or duplicated).
samplesort is basically quicksort on steroids: a power of 2 close
to n/ln(n) is computed, and that many elements (less 1) are picked at
random from the array and sorted. These 2**k - 1 elements are then
used as preselected pivots for an equal number of quicksort
partitioning steps, partitioning the slice into 2**k chunks each of
size about ln(n). These small final chunks are then usually handled
by binarysort. Note that when k=1, this is roughly the same as an
ordinary quicksort using a random pivot, and when k=2 this is roughly
a median-of-3 quicksort. From that view, using k ~= lg(n/ln(n)) makes
this a "median of n/ln(n)" quicksort. You can also view it as a kind
of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.
The large number of samples makes a quadratic-time case almost
impossible, and asymptotically drives the average-case number of
compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
3 variant) down to N lg N.
We also play lots of low-level tricks to cut the number of compares.
Very obscure: To avoid using extra memory, the PPs are stored in the
array and shuffled around as partitioning proceeds. At the start of a
partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
adjacent (either on the left or the right!) to a chunk of X elements
that are to be partitioned: P X or X P. In either case we need to
shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
left, followed by the PP to be used for this step (that's the middle
of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
P X or X P -> Psmall pivot X Plarge
and the order of the PPs must not be altered. It can take a while
to realize this isn't trivial! It can take even longer <wink> to
understand why the simple code below works, using only 2**(m-1) swaps.
The key is that the order of the X elements isn't necessarily
preserved: X can end up as some cyclic permutation of its original
order. That's OK, because X is unsorted anyway. If the order of X
had to be preserved too, the simplest method I know of using O(1)
scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
Since len(X) is typically several times larger than 2**(m-1), that
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -