📄 derivative.m
字号:
% Illustration of the derivative
% Optimization Using MATLAB
% Dr. P.Venkataraman
%
% section 4.2.2
% This example illustrates the limiting process
% in the definition of the derivative
% In the figure animation
% 1. note the scales
% 2. as the displacement gets smaller the function
% and the straight line coincide suggesting the
% the line is tangent t the curve at the point
%
syms x f deriv % symboli variables
f=12+(x-1)*(x-1)*(x-2)*(x-3); % definition of f(x)
deriv=diff(f); % computing the derivative
xp = 3.0; % point at which the
% derivative will be computed
delx=[1 .1 .01 .001]; % decreasing displacements - vector
xvar =xp + delx; % neighboring points - vector
fvar =subs(f,xvar);% function values at neighboring points
fp =subs(f,xp); % function value at xp
dfp=subs(deriv,xp); % actual value of derivative at xp
delf = fvar-fp; % change in the function values
derv= delf./delx ; % derivative using definition
% limiting process is being invoked
% as displacement is getting smaller
ezplot(f,[0,4]) % symbolic plot of the original function
% between 0 and 4
% draw a line at value of 12 for reference
line([0 4],[12 12],'Color','g','LineWidth',1)
figure % use a new figure for animation
% figures are drawn as if zooming in
for i = 1:length(delx)
clf % clear reference figure
ezplot(f,[xp,xvar(i)])
% plot function within the displacement value only
line([xp xvar(i)],[fp subs(f,xvar(i))],'Color','r')
pause(2) % pause for 2 seconds - animation effect
end
xpstack=[xp xp xp xp]; % dummy vector for display
dfpstack=[dfp dfp dfp dfp]; % same
[xpstack' delx' xvar' delf' derv' dfpstack']
% this information is availabl in Table 4.1
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -