📄 example5_3.m
字号:
%
% Ch 5: Numerical Techniques - 1 D optimization
% Optimzation with MATLAB, Section 5.4.2
% TPBVP - Blassius Problem - Flow over a flat plate
% Example of a real 1 variable optimization problem
% copyright (code) Dr. P.Venkataraman
%
%
%************************************
% requires: UpperBound_1Var.m
% GoldSection_1Var.m
% state.m
%***************************************
%
% uses Matlab ODE45 - Runge-Kutta method
%
function ReturnVal = Example5_3(x)
ti = 0.0; % start of integration
tf = 5.0; % final value of integration - ideally infinity
% previous solution suggest this is a good choice
% can also be a design variable - in that case it
% will be a two-variable problem
tintval = [ti tf]; % array of start and finish points
bcinit = [0 0 x]; % initial values for the integration
% note x is the design variable
[t y ] = ode45('Ex5_3_state',tintval,bcinit);
% in the above, the ode45 will look for a file called
% state.m where the system equations are to be found
% the system equations must be formulated in state space form
n = length(t); % to establish the final values
% ode45 in this usage is a variable step integrator
% return the error in the final value of the first derivative
% this was the boundary condition at the final point
ReturnVal =(y(n,2)-1).^2;
% The following can be printed if you are curious
%[t y];
%plot(t,y(:,2),'k-') % only interested in velocity profile
%grid
%title('Laminar flow over a flat plate')
%xlabel('u/U_(inf)')
%ylabel('non-dimensional y')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -