📄 goldsection_nvar.m
字号:
%
% Ch 5: Numerical Techniques - 1 D optimization
% Optimzation with MATLAB, Section 5.4.1
% Golden Section Method - many variables
% copyright (code) Dr. P.Venkataraman
%
% An m-file to apply the Golden Section Method
%************************************
% requires: UpperBound_nVar.m
%***************************************
%
% the following information are passed to the function
% the name of the function 'functname'
% this function should be available as a function m-file
% and should return the value of the function
% corresponding to a design vector given a vector
%
% the tolerance 0.001
% following needed for UpperBound_nVar
% the current position vector x
% the current search direction s
% the initial value lowbound
% the incremental value intvl
% the number of scanning steps ntrials
%
% the function returns a row vector of the following
% alpha(1),f(alpha1), design variables at alpha(1)
% for the last iteration
% sample callng statement
% GoldSection_nVar('Example5_2',0.001,[0 0 0 ],[0 0 6],0,0.1,10)
%
function ReturnValue = ...
GoldSection_nVar(functname,tol,x,s,lowbound,intvl,ntrials)
format compact;
% find upper bound
upval = UpperBound_nVar(functname,x,s,lowbound,intvl,ntrials);
au=upval(1); fau = upval(2);
% if upper bound returns value close to lowbound
% return to the calling procedure to reverse the direction of the
% search vector and try again
if (au <= 1.0e-06)
aL = lowbound; xL = x + aL*s;
faL =feval(functname,xL);
ReturnValue =[aL faL x];
return
end
if (tol == 0) tol = 0.0001; %default
end
eps1 = tol/(au - lowbound);
tau = 0.38197;
nmax = round(-2.078*log(eps1)); % no. of iterations
aL = lowbound; xL = x + aL*s; faL =feval(functname,xL);
a1 = (1-tau)*aL + tau*au; x1 = x + a1*s; fa1 = feval(functname,x1);
a2 = tau*aL + (1 - tau)*au; x2 = x + a2*s; fa2 = feval(functname,x2);
% storing all the four values for printing
% remember to suppress printing after debugging
%fprintf('start \n')
%fprintf('alphal(low) alpha(1) alpha(2) alpha{up) \n')
avec = [aL a1 a2 au;faL fa1 fa2 fau];
%disp([avec])
for i = 1:nmax
if fa1 >= fa2
aL = a1; faL = fa1;
a1 = a2; fa1 = fa2;
a2 = tau*aL + (1 - tau)*au; x2 = x + a2*s;
fa2 = feval(functname,x2);
au = au; fau = fau; % not necessary -just for clarity
%fprintf('\niteration '),disp(i)
%fprintf('alphal(low) alpha(1) alpha(2) alpha{up) \n')
avec = [aL a1 a2 au;faL fa1 fa2 fau];
%disp([avec])
else
au = a2; fau = fa2;
a2 = a1; fa2 = fa1;
a1 = (1-tau)*aL + tau*au; x1 = x + a1*s;
fa1 = feval(functname,x1);
aL = aL; faL = faL; % not necessary
%fprintf('\niteration '),disp(i)
%fprintf('alphal(low) alpha(1) alpha(2) alpha{up) \n')
avec = [aL a1 a2 au;faL fa1 fa2 fau];
%disp([avec])
end
end
%fprintf('final \n')
%fprintf('alphal(low) alpha(1) alpha(2) alpha{up) \n')
avec = [aL a1 a2 au;faL fa1 fa2 fau];
%disp([avec])
% returns the value at the last iteration
ReturnValue =[a1 fa1 x1];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -