📄 det3.m
字号:
function d = det3(A)% det3 - 3x3 determinant%% d = det3(A);%% A is a [3 3 n] matrix, d is a vector of size d where% d(i)=det(A(:,:,i)).%% It computes explicitely the det by expanding along the 1st columns 2x2% determinant. Faster than recursive loops.%% Note: works also for 2x2 det.% Note: for higher order det, use loop%% Copyright (c) 2008 Gabriel Peyreif size(A,1)==2 && size(A,2)==2 %% 2x2 Det %% d = A(1,1,:).*A(2,2,:) - A(1,2,:).*A(2,1,:);elseif size(A,1)==3 && size(A,2)==3 %% 3x3 Det %% d = A(1,1,:).*( A(2,2,:).*A(3,3,:) - A(2,3,:).*A(3,2,:) ) - ... A(1,2,:).*( A(2,1,:).*A(3,3,:) - A(2,3,:).*A(3,1,:) ) + ... A(1,3,:).*( A(2,1,:).*A(3,2,:) - A(2,2,:).*A(3,1,:) );else n = size(A,3); d = zeros(n,1); for i=1:n d(i) = det(A(:,:,i)); endendd = d(:);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -