⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fm_opfsdr.m

📁 电力系统的psat
💻 M
📖 第 1 页 / 共 3 页
字号:
  % Hessian Matrix [D2xLms]  % --------------------------------------------------------------------  H3  = sparse(n_a,n_y);  Hx = -ro(n2+Supply.bus);  Sidx = 1:Supply.n;  H3(n_gen+Sidx,n_d) = Hx;  H3(n_gen+Sidx,n4+1+n_a) = Hx.*ksu;  H5(n_gen+1,n2+n_gen+Sidx) = Hx';  H41(end,n2+n_gen+Sidx) = Hx'.*ksu';  Didx = 1:Demand.n;  Hx = ro(n2+Demand.bus) + qonp.*ro(n3+Demand.bus);  H3(n_gen+Supply.n+Didx,n_d) = Hx;  H5(n_gen+1,n2+n_gen+Supply.n+Didx) = Hx';  H3 = H3 - sparse(n_gen+nS,n2+n_gen+nS,(1-w)*(2*Csc+2*KTBS),n_a,n_y);  H3 = H3 - sparse(busS,n2+busS,(1-w)*2*Dsc,n_a,n_y);  H3 = H3 + sparse(n_gen+Supply.n+nD,n_gen+Supply.n+n2+nD, ...		   (1-w)*(2*Cdc+2*KTBD+2*Ddc.*qonp.*qonp),n_a,n_y);  V_snap = DAE.V;     ang_snap = DAE.a;  DAE.V  = Vc;        DAE.a    = angc;  if OPF.line, Line.Y = Y_cont; end  Hess_c = -fm_hessian(ro(n2+1:n4))+Hijc+Hjic;  DAE.V = V_snap;     DAE.a = ang_snap;  if OPF.line, Line.Y = Y_orig; end  Hess = -fm_hessian(ro(1:n2))+Hij+Hji;  D2xLms = [Hess, H31; -H3; -H41, [Hess_c, Hcolk; Hrowk], H42; -H5];  switch OPF.method   case 1 % Newton Directions    % reduced system    if Settings.octave      H_m = diag(mu./s);      H_s = diag(1./s);    else      H_m = sparse(1:n_s,1:n_s,mu./s,n_s,n_s);      H_s = sparse(1:n_s,1:n_s,1./s,n_s,n_s);    end    Jh(:,SW.bus+n2+n_a) = 0;    Jh(:,SW.bus) = 0;    gy = gy+(Jh.')*(H_m*gmu-H_s*gs);    Jd = [D2xLms+(Jh.')*(H_m*Jh),-Jg.';-Jg,Z3];    % reference angle for the actual system    Jd(SW.bus,:) = 0;    Jd(:,SW.bus) = 0;    if Settings.octave      Jd(SW.bus,SW.bus) = eye(SW.n);    else      Jd(SW.bus,SW.bus) = speye(SW.n);   end    gy(SW.bus) = 0;    % reference angle for the critical system    Jd(:,SW.bus+n2+n_a) = 0;    Jd(SW.bus+n2+n_a,:) = 0;    if Settings.octave      Jd(SW.bus+n2+n_a,SW.bus+n2+n_a) = eye(SW.n);    else      Jd(SW.bus+n2+n_a,SW.bus+n2+n_a) = speye(SW.n);    end    gy(SW.bus+n2+n_a) = 0;    % variable increments    Dx = -Jd\[gy; -DAE.gp; -DAE.gq; -gc1p; -gc1q];    Ds = -(gmu+Jh*Dx([1:n_y]));    Dm = -H_s*gs-H_m*Ds;   case 2 % Mehrotra's Predictor-Corrector    % -------------------    % Predictor step    % -------------------    % reduced system    if Settings.octave      H_m  = diag(mu./s);    else      H_m  = sparse(1:n_s,1:n_s,mu./s,n_s,n_s);    end    Jh(:,SW.bus+n2+n_a) = 0;    Jh(:,SW.bus) = 0;    gx = gy+(Jh.')*(H_m*gmu-mu);    Jd = [D2xLms+(Jh.')*(H_m*Jh),-Jg.';-Jg,Z3];    % reference angle for the actual system    Jd(SW.bus,:) = 0;    Jd(:,SW.bus) = 0;    if Settings.octave      Jd(SW.bus,SW.bus) = eye(SW.n);    else      Jd(SW.bus,SW.bus) = speye(SW.n);    end    gx(SW.bus) = 0;    % reference angle for the critical system    Jd(:,SW.bus+n2+n_a) = 0;    Jd(SW.bus+n2+n_a,:) = 0;    if Settings.octave      Jd(SW.bus+n2+n_a,SW.bus+n2+n_a) = eye(SW.n);    else      Jd(SW.bus+n2+n_a,SW.bus+n2+n_a) = speye(SW.n);    end    gx(SW.bus+n2+n_a) = 0;    % LU factorization    [L,U,P] = lu(Jd);    % variable increments    Dx = -U\(L\(P*[gx; -DAE.gp; -DAE.gq; -gc1p; -gc1q]));    Ds = -(gmu+Jh*Dx([1:n_y]));    Dm = -mu-H_m*Ds;    % centering correction    a1 = find(Ds < 0);    a2 = find(Dm < 0);    if isempty(a1), ratio1 = 1; else, ratio1 = -s(a1)./Ds(a1);   end    if isempty(a2), ratio2 = 1; else, ratio2 = -mu(a2)./Dm(a2); end    alpha_P = min(1,gamma*min(ratio1));    alpha_D = min(1,gamma*min(ratio2));    c_gap_af = [s + alpha_P*Ds]'*[mu + alpha_D*Dm];    c_gap = s'*mu;    ms = min((c_gap_af/c_gap)^2,0.2)*c_gap_af/n_s;    gs = mu+(Ds.*Dm-ms)./s;    % -------------------    % Corrector Step    % -------------------    % new increment for variable y    gx = gy+(Jh.')*(H_m*gmu-gs);    gx(SW.bus) = 0;    gx(SW.bus+n2+n_a) = 0;    % variable increments    Dx = -U\(L\(P*[gx; -DAE.gp; -DAE.gq; -gc1p; -gc1q]));    Ds = -(gmu+Jh*Dx([1:n_y]));    Dm = -gs-H_m*Ds;  end  % =======================================================================  % Variable Increments  % =======================================================================  Dtheta = Dx(nB);           idx = Bus.n;        % curr. sys.  DV     = Dx(idx+nB);       idx = idx + Bus.n;  DQg    = Dx(idx+nG);       idx = idx + n_gen;  DPs    = Dx(idx+nS);       idx = idx + Supply.n;  DPd    = Dx(idx+nD);       idx = idx + Demand.n;  Dthetac = Dx(idx+nB);      idx = idx + Bus.n;  % crit. sys.  DVc     = Dx(idx+nB);      idx = idx + Bus.n;  Dkg     = Dx(1+idx);       idx = idx + 1;  DQgc    = Dx(idx+nG);      idx = idx + n_gen;  Dlc     = Dx(1+idx);       idx = idx + 1;  if Rsrv.n, DPr = Dx(idx+nR);    idx = idx + Rsrv.n;    end  Dro     = Dx(1+idx:end);                       % Lag. mult.  % =======================================================================  % Updating the Variables  % =======================================================================  % Step Lenght Parameters [alpha_P & alpha_D]  %________________________________________________________________________  a1 = find(Ds  < 0);  a2 = find(Dm < 0);  if isempty(a1), ratio1 = 1; else, ratio1 = (-s(a1)./Ds(a1));   end  if isempty(a2), ratio2 = 1; else, ratio2 = (-mu(a2)./Dm(a2)); end  alpha_P = min(1,gamma*min(ratio1));  alpha_D = min(1,gamma*min(ratio2));  % New primal variables  %________________________________________________________________________  DAE.a = DAE.a + alpha_P * Dtheta;  DAE.V = DAE.V + alpha_P * DV;  Ps = Ps + alpha_P * DPs;  Pd = Pd + alpha_P * DPd;  Qg = Qg + alpha_P * DQg;  if Rsrv.n, Pr = Pr + alpha_P * DPr; end  angc = angc + alpha_P * Dthetac;  Vc   = Vc   + alpha_P * DVc;  kg   = kg   + alpha_P * Dkg;  Qgc  = Qgc  + alpha_P * DQgc;  lc   = lc   + alpha_P * Dlc;  s    = s    + alpha_P * Ds;  % New dual variables  %________________________________________________________________________  ro = ro + alpha_D*Dro;  mu = mu + alpha_D*Dm;  % Objective Function  %________________________________________________________________________  s(find(s == 0)) = epsilon_mu;  Fixd_c = sum(Csa) - sum(Cda) + sum(Dsa) - sum(Dda);  Prop_c = Csb'*Ps  - Cdb'*Pd + Dsb'*Qg(busS) - Ddb'*(qonp.*Pd);  TieBreaking = (sum(KTBS.*Ps.*Ps) - sum(KTBD.*Pd.*Pd));  Quad_c = Csc'*(Ps.*Ps) - Cdc'*(Pd.*Pd) - Ddc'*(qonp.*qonp.*Pd.*Pd);  Quad_q = Dsc'*(Qg(busS).*Qg(busS));  if Rsrv.n, Reserve = Cr'*Pr; else, Reserve = 0; end  G_obj = (1-w)*(Fixd_c + Prop_c + Quad_c + Quad_q + TieBreaking + Reserve) - ...          ms*sum(log(s)) - w*lc;  % =======================================================================  % Reducing the Barrier Parameter  % =======================================================================  sigma = max(0.99*sigma, 0.1);     % Centering Parameter  c_gap = s'*mu;                    % Complementarity Gap  ms = min(abs(sigma*c_gap/n_s),1); % Evaluation of the Barrier Parameter  % =======================================================================  % Testing for Convergence  % =======================================================================  test1  = ms <= epsilon_mu;  norma2 = norm(Dx,inf);  test2  = norma2 <= epsilon_2;  norma3 = norm([DAE.gp; DAE.gq; gc1p; gc1q],inf);  test3  = norma3 <= epsilon_1;  norma4 = abs(G_obj-G_obj_k_1)/(1+abs(G_obj));  test4  = norma4 <= epsilon_2;  if test1 & test2 & test3 & test4, break, end  % Displaying Convergence Tests  %________________________________________________________________________  iteration = iteration + 1;  if OPF.show    fm_disp(['Iter. =',fvar(iteration,5),'  mu =', fvar(ms,8), ...             '  |dy| =', fvar(norma2,8), '  |f(y)| =', ...             fvar(norma3,8),'  |dG(y)| =' fvar(norma4,8)])  end  fm_status('opf','update',[iteration, ms, norma2, norma3, norma4], ...            iteration)  if iteration > iter_max, break, endend% Some settings ...%____________________________________________________________________________Demand.con(:,7) = Pd;Supply.con(:,6) = Ps;if Rsrv.n, Rsrv.con(:,10) = Pr; endIij  = sqrt(Iij);Iji  = sqrt(Iji);Iijc = sqrt(Iijc);Ijic = sqrt(Ijic);Iijmax  = sqrt(Iijmax);Iijcmax = sqrt(Iijcmax);MVA = Settings.mva;Pay = ro(1:Bus.n).*DAE.glfp*MVA;ISOPay = sum(Pay);% Nodal Congestion Prices (NCPs)%____________________________________________________________________________Jlfv(SW.bus,:) = [];Jlfv(:,SW.bus) = [];dH_dtV(SW.bus,:) = [];NCP = -Jlfv'\dH_dtV;OPF.NCP = [NCP(1:SW.bus-1);0;NCP(SW.bus:end)];OPF.obj = G_obj;OPF.ms = ms;OPF.dy = norma2;OPF.dF = norma3;OPF.dG = norma4;OPF.iter = iteration;OPF.gpc = gc2p;OPF.gqc = gc2q;SNB.init = 0;LIB.init = 0;CPF.init = 0;OPF.init = 2;% set Pg, Qg, Pl and Qlfor i = 1:Demand.n,  k = Demand.bus(i);  Bus.Pl(k) = Snapshot(1).Pl(k)+Pd(i);  Bus.Ql(k) = Snapshot(1).Ql(k)+Pd(i)*qonp(i);endfor i = 1:Supply.n  k = Supply.bus(i);  Bus.Pg(k) = Snapshot(1).Pg(k)+Ps(i);endfor i = 1:n_gen  Bus.Qg(nG(i)) = Qg(i);end% Display Results%____________________________________________________________________________if (Settings.showlf | OPF.show) & clpsat.showopf  OPF.report = cell(1,1);  OPF.report{1,1} = ['Weighting Factor = ',fvar(w,8)];  OPF.report{2,1} = ['Lambda = ',fvar(lc,8)];  OPF.report{3,1} = ['Kg = ',fvar(kg,8)];  OPF.report{4,1} = ['Total Losses = ',fvar(sum(DAE.glfp),8),' [p.u.]'];  OPF.report{5,1} = ['Bid Losses = ',fvar(sum(DAE.glfp)-Snapshot(1).Ploss,8),' [p.u.]'];  if ~noDem    OPF.report{6,1} = ['Total demand = ', ...                        fvar(sum(Pd),8),' [p.u.]'];  end  OPF.report{6+(~noDem),1} = ['TTL = ', ...                      fvar(sum(Pd)+sum(PQ.con(:,4)),8),' [p.u.]'];  fm_disp  fm_disp('----------------------------------------------------------------')  Settings.lftime = toc;  if Fig.stat, fm_stat; end  if iteration > iter_max    fm_disp('IPM-OPF: Method did not Converge',2)  elseif Fig.main    if ~get(Fig.main,'UserData')      fm_disp('IPM-OPF: Interrupted',2)    else      fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)    end  else    fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)    if Settings.showlf == 1      fm_stat(OPF.report);    else      if Settings.beep        beep      end    end  end  fm_status('opf','close')else  if iteration > iter_max    fm_disp('IPM-OPF: Method did not Converge',2)  elseif Fig.main    if ~get(Fig.main,'UserData')      fm_disp(['IPM-OPF: Interrupted'],2)    else      fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)    end  else    fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)  endendif iteration > iter_max,  OPF.conv = 0;else,  OPF.conv = 1;endif Rsrv.n,  OPF.guess = [s; mu; DAE.a; DAE.V; Qg; Ps; Pd; ...               angc; Vc; kg; Qgc; lc; Pr; ro];else  OPF.guess = [s; mu; DAE.a; DAE.V; Qg; Ps; Pd; ...               angc; Vc; kg; Qgc; lc; ro];endOPF.atc = (1+lc)*(sum(Pd)+sum(PQ.con(:,4)))*MVA;OPF.Vc = Vc;OPF.ac = angc;if noDem,  Demand.con = [];  Demand.n = 0;  Demand.bus = [];endif ~OPF.basepl  Bus.Pl = buspl;  Bus.Ql = busql;  PQ.con(:,[4 5]) = pqcon;endif ~OPF.basepg  Snapshot(1).Ploss = ploss;  Bus.Pg = buspg;  Bus.Qg = busqg;  PV.con(:,4) = pvcon;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -