📄 aci3_3.c
字号:
// speed1.InputSelect = 0;
// speed1.BaseRpm = 120*BASE_FREQ/P;//因为P为极数,不是极对数
// speed1.SpeedScaler = 60*(SYSTEM_FREQUENCY*1000000/1000)*1/(128*speed1.BaseRpm);
// #endif
// Initialize RAMPGEN module
rg1.StepAngleMax = _IQ(BASE_FREQ*T);
// Initialize the CUR_MOD constant module
// cm1_const.Rr = RR;
// cm1_const.Lr = LR;
// cm1_const.fb = BASE_FREQ;
// cm1_const.Ts = T;
// cm1_const.calc(&cm1_const);
// Initialize the CUR_MOD module
// cm1.Kr = _IQ(cm1_const.Kr);
// cm1.Kt = _IQ(cm1_const.Kt);
// cm1.K = _IQ(cm1_const.K);
// Initialize the PID_REG3 module for Id
pid1_id.Kp = _IQ(0.9463);
pid1_id.Ki = _IQ(T/0.04);
pid1_id.Kd = _IQ(0/T);
pid1_id.Kc = _IQ(0.2);
pid1_id.OutMax = _IQ(0.30);
pid1_id.OutMin = _IQ(-0.30);
// Initialize the PID_REG3 module for Iq
pid1_iq.Kp = _IQ(0.9463);
pid1_iq.Ki = _IQ(T/0.04);
pid1_iq.Kd = _IQ(0/T);
pid1_iq.Kc = _IQ(0.2);
pid1_iq.OutMax = _IQ(0.95);
pid1_iq.OutMin = _IQ(-0.95);
// Initialize the PID_REG3 module for speed
pid1_spd.Kp = _IQ(1);
pid1_spd.Ki = _IQ(T*SpeedLoopPrescaler/0.2);
pid1_spd.Kd = _IQ(0/(T*SpeedLoopPrescaler));
pid1_spd.Kc = _IQ(0.2);
pid1_spd.OutMax = _IQ(1);
pid1_spd.OutMin = _IQ(-1);
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// IDLE loop. Just sit and loop forever:
}
interrupt void MainISR(void)
{
// Verifying the ISR
IsrTicker++;
// ***************** LEVEL5 *****************
#if (BUILDLEVEL==LEVEL5)
// ------------------------------------------------------------------------------
// Call the ILEG2_VDC read function.
// ------------------------------------------------------------------------------
ilg2_vdc1.read(&ilg2_vdc1);
// ------------------------------------------------------------------------------
// Connect inputs of the CLARKE module and call the clarke transformation
// calculation function.
// ------------------------------------------------------------------------------
clarke1.As = _IQ15toIQ((int32)ilg2_vdc1.ImeasA);
clarke1.Bs = _IQ15toIQ((int32)ilg2_vdc1.ImeasB);
clarke1.calc(&clarke1);
// ------------------------------------------------------------------------------
// Connect inputs of the PARK module and call the park transformation
// calculation function.
// ------------------------------------------------------------------------------
park1.Alpha = clarke1.Alpha;
park1.Beta = clarke1.Beta;
park1.Angle = speed1.ElecTheta;
park1.calc(&park1);
// ------------------------------------------------------------------------------
// Connect inputs of the PID_REG3 module and call the PID speed controller
// calculation function.
// ------------------------------------------------------------------------------
if (SpeedLoopCount==SpeedLoopPrescaler)
{
pid1_spd.Ref = _IQ(SpeedRef);
pid1_spd.Fdb = speed1.Speed;
pid1_spd.calc(&pid1_spd);
SpeedLoopCount=1;
}
else SpeedLoopCount++;
// ------------------------------------------------------------------------------
// Connect inputs of the PID_REG3 module and call the PID IQ controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_iq.Ref = pid1_spd.Out;
pid1_iq.Fdb = park1.Qs;
pid1_iq.calc(&pid1_iq);
// ------------------------------------------------------------------------------
// Connect inputs of the PID_REG3 module and call the PID ID controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_id.Ref = _IQ(IdRef);
pid1_id.Fdb = park1.Ds;
pid1_id.calc(&pid1_id);
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park transformation
// calculation function.
// ------------------------------------------------------------------------------
ipark1.Ds = pid1_id.Out;
ipark1.Qs = pid1_iq.Out;
ipark1.Angle = speed1.ElecTheta;
ipark1.calc(&ipark1);
// ------------------------------------------------------------------------------
// Connect inputs of the SVGEN_DQ module and call the space-vector gen.
// calculation function.
// ------------------------------------------------------------------------------
svgen_dq1.Ualpha = ipark1.Alpha;
svgen_dq1.Ubeta = ipark1.Beta;
svgen_dq1.calc(&svgen_dq1);
// ------------------------------------------------------------------------------
// Connect inputs of the PWM_DRV module and call the PWM signal generation
// update function.
// ------------------------------------------------------------------------------
pwm1.MfuncC1 = (int16)_IQtoIQ15(svgen_dq1.Ta); // MfuncC1 is in Q15
pwm1.MfuncC2 = (int16)_IQtoIQ15(svgen_dq1.Tb); // MfuncC2 is in Q15
pwm1.MfuncC3 = (int16)_IQtoIQ15(svgen_dq1.Tc); // MfuncC3 is in Q15
pwm1.update(&pwm1);
// ------------------------------------------------------------------------------
// Call the QEP calculation function
// ------------------------------------------------------------------------------
qep1.calc(&qep1);
// ------------------------------------------------------------------------------
// Connect inputs of the SPEED_FR module and call the speed calculation function
// ------------------------------------------------------------------------------
#if (DSP_TARGET==F2812)
speed1.ElecTheta = _IQ15toIQ((int32)qep1.ElecTheta);
speed1.DirectionQep = (int32)(qep1.DirectionQep);
speed1.calc(&speed1);
#endif
// ------------------------------------------------------------------------------
// Connect inputs of the CUR_MOD module and call the current model
// calculation function.
// ------------------------------------------------------------------------------
// cm1.IDs = park1.Ds;
// cm1.IQs = park1.Qs;
// cm1.Wr = speed1.Speed;
// cm1.calc(&cm1);
// ------------------------------------------------------------------------------
// Connect inputs of the PWMDAC module
// ------------------------------------------------------------------------------
// PwmDacCh1 = (int16)_IQtoIQ15(svgen_dq1.Ta);
// PwmDacCh2 = (int16)_IQtoIQ15(clarke1.As);
// PwmDacCh3 = (int16)_IQtoIQ15(cm1.Theta);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
// DlogCh1 = (int16)_IQtoIQ15(svgen_dq1.Ta);
// DlogCh2 = (int16)_IQtoIQ15(cm1.Theta);
// DlogCh3 = (int16)_IQtoIQ15(pid1_spd.Ref);
// DlogCh4 = (int16)_IQtoIQ15(pid1_spd.Fdb);
// ------------------------------------------------------------------------------
// Connect inputs of the EN_DRV module and call the enable/disable PWM signal
// update function. (FOR DMC1500 ONLY)
// ------------------------------------------------------------------------------
// drv1.EnableFlag = EnableFlag;
// drv1.update(&drv1);
#endif // (BUILDLEVEL==LEVEL5)
// ------------------------------------------------------------------------------
// Call the PWMDAC update function.
// ------------------------------------------------------------------------------
// pwmdac1.update(&pwmdac1);
// ------------------------------------------------------------------------------
// Call the DATALOG update function.
// ------------------------------------------------------------------------------
// dlog.update(&dlog);
#if (DSP_TARGET==F2812)
// Enable more interrupts from this timer
EvaRegs.EVAIMRA.bit.T1UFINT = 1;//屏蔽寄存器设置,使能T1UFINT
// Note: To be safe, use a mask value to write to the entire
// EVAIFRA register. Writing to one bit will cause a read-modify-write
// operation that may have the result of writing 1's to clear
// bits other then those intended.
EvaRegs.EVAIFRA.all = BIT9;//标志寄存器设置:通用定时器1下溢中断复位标志
// Acknowledge interrupt to recieve more interrupts from PIE group 2
PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;
#endif
}
//===========================================================================
// No more.
//===========================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -