⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qdivrem.c

📁 this is aes algorithm
💻 C
字号:
/*- * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifdef notdef#include <sys/cdefs.h>__FBSDID("$FreeBSD: src/sys/libkern/qdivrem.c,v 1.10 2004/04/07 20:46:10 imp Exp $");#endif/* * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed), * section 4.3.1, pp. 257--259. */#include "quad.h"#define	B	(1 << HALF_BITS)	/* digit base *//* Combine two `digits' to make a single two-digit number. */#define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))/* select a type for digits in base B: use unsigned short if they fit */#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xfffftypedef unsigned short digit;#elsetypedef u_long digit;#endif/* * Shift p[0]..p[len] left `sh' bits, ignoring any bits that * `fall out' the left (there never will be any such anyway). * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS. */static voidshl(register digit *p, register int len, register int sh){	register int i;	for (i = 0; i < len; i++)		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));	p[i] = LHALF(p[i] << sh);}/* * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. * * We do this in base 2-sup-HALF_BITS, so that all intermediate products * fit within u_long.  As a consequence, the maximum length dividend and * divisor are 4 `digits' in this base (they are shorter if they have * leading zeros). */u_quad_t__qdivrem(uq, vq, arq)	u_quad_t uq, vq, *arq;{	union uu tmp;	digit *u, *v, *q;	register digit v1, v2;	u_long qhat, rhat, t;	int m, n, d, j, i;	digit uspace[5], vspace[5], qspace[5];	/*	 * Take care of special cases: divide by zero, and u < v.	 */	if (vq == 0) {		/* divide by zero. */		static volatile const unsigned int zero = 0;		tmp.ul[H] = tmp.ul[L] = 1 / zero;		if (arq)			*arq = uq;		return (tmp.q);	}	if (uq < vq) {		if (arq)			*arq = uq;		return (0);	}	u = &uspace[0];	v = &vspace[0];	q = &qspace[0];	/*	 * Break dividend and divisor into digits in base B, then	 * count leading zeros to determine m and n.  When done, we	 * will have:	 *	u = (u[1]u[2]...u[m+n]) sub B	 *	v = (v[1]v[2]...v[n]) sub B	 *	v[1] != 0	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)	 *	m >= 0 (otherwise u < v, which we already checked)	 *	m + n = 4	 * and thus	 *	m = 4 - n <= 2	 */	tmp.uq = uq;	u[0] = 0;	u[1] = HHALF(tmp.ul[H]);	u[2] = LHALF(tmp.ul[H]);	u[3] = HHALF(tmp.ul[L]);	u[4] = LHALF(tmp.ul[L]);	tmp.uq = vq;	v[1] = HHALF(tmp.ul[H]);	v[2] = LHALF(tmp.ul[H]);	v[3] = HHALF(tmp.ul[L]);	v[4] = LHALF(tmp.ul[L]);	for (n = 4; v[1] == 0; v++) {		if (--n == 1) {			u_long rbj;	/* r*B+u[j] (not root boy jim) */			digit q1, q2, q3, q4;			/*			 * Change of plan, per exercise 16.			 *	r = 0;			 *	for j = 1..4:			 *		q[j] = floor((r*B + u[j]) / v),			 *		r = (r*B + u[j]) % v;			 * We unroll this completely here.			 */			t = v[2];	/* nonzero, by definition */			q1 = u[1] / t;			rbj = COMBINE(u[1] % t, u[2]);			q2 = rbj / t;			rbj = COMBINE(rbj % t, u[3]);			q3 = rbj / t;			rbj = COMBINE(rbj % t, u[4]);			q4 = rbj / t;			if (arq)				*arq = rbj % t;			tmp.ul[H] = COMBINE(q1, q2);			tmp.ul[L] = COMBINE(q3, q4);			return (tmp.q);		}	}	/*	 * By adjusting q once we determine m, we can guarantee that	 * there is a complete four-digit quotient at &qspace[1] when	 * we finally stop.	 */	for (m = 4 - n; u[1] == 0; u++)		m--;	for (i = 4 - m; --i >= 0;)		q[i] = 0;	q += 4 - m;	/*	 * Here we run Program D, translated from MIX to C and acquiring	 * a few minor changes.	 *	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.	 */	d = 0;	for (t = v[1]; t < B / 2; t <<= 1)		d++;	if (d > 0) {		shl(&u[0], m + n, d);		/* u <<= d */		shl(&v[1], n - 1, d);		/* v <<= d */	}	/*	 * D2: j = 0.	 */	j = 0;	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */	v2 = v[2];	/* for D3 */	do {		register digit uj0, uj1, uj2;		/*		 * D3: Calculate qhat (\^q, in TeX notation).		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and		 * let rhat = (u[j]*B + u[j+1]) mod v[1].		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],		 * decrement qhat and increase rhat correspondingly.		 * Note that if rhat >= B, v[2]*qhat < rhat*B.		 */		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */		uj1 = u[j + 1];	/* for D3 only */		uj2 = u[j + 2];	/* for D3 only */		if (uj0 == v1) {			qhat = B;			rhat = uj1;			goto qhat_too_big;		} else {			u_long nn = COMBINE(uj0, uj1);			qhat = nn / v1;			rhat = nn % v1;		}		while (v2 * qhat > COMBINE(rhat, uj2)) {	qhat_too_big:			qhat--;			if ((rhat += v1) >= B)				break;		}		/*		 * D4: Multiply and subtract.		 * The variable `t' holds any borrows across the loop.		 * We split this up so that we do not require v[0] = 0,		 * and to eliminate a final special case.		 */		for (t = 0, i = n; i > 0; i--) {			t = u[i + j] - v[i] * qhat - t;			u[i + j] = LHALF(t);			t = (B - HHALF(t)) & (B - 1);		}		t = u[j] - t;		u[j] = LHALF(t);		/*		 * D5: test remainder.		 * There is a borrow if and only if HHALF(t) is nonzero;		 * in that (rare) case, qhat was too large (by exactly 1).		 * Fix it by adding v[1..n] to u[j..j+n].		 */		if (HHALF(t)) {			qhat--;			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */				t += u[i + j] + v[i];				u[i + j] = LHALF(t);				t = HHALF(t);			}			u[j] = LHALF(u[j] + t);		}		q[j] = qhat;	} while (++j <= m);		/* D7: loop on j. */	/*	 * If caller wants the remainder, we have to calculate it as	 * u[m..m+n] >> d (this is at most n digits and thus fits in	 * u[m+1..m+n], but we may need more source digits).	 */	if (arq) {		if (d) {			for (i = m + n; i > m; --i)				u[i] = (u[i] >> d) |				    LHALF(u[i - 1] << (HALF_BITS - d));			u[i] = 0;		}		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);		*arq = tmp.q;	}	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);	return (tmp.q);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -