📄 do_learn_nu.m
字号:
% The algorithms implemented by Alexander Vezhnevets aka Vezhnick
% <a>href="mailto:vezhnick@gmail.com">vezhnick@gmail.com</a>
%
% Copyright (C) 2005, Vezhnevets Alexander
% vezhnick@gmail.com
%
% This file is part of GML Matlab Toolbox
% For conditions of distribution and use, see the accompanying License.txt file.
%
% do_learn_nu Implements splitting of tree node
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% [tree_node_left, tree_node_right, split_error] =
% do_learn_nu(tree_node, dataset, labels, weights, papa)
% ---------------------------------------------------------------------------------
% Arguments:
% tree_node - object of tree_node_w class
% dataset - training data
% labels - training labels
% weights - weights of training data
% papa - parent node (the one being split)
% Return:
% tree_node_left - left node (result of splitting)
% tree_node_right - right node (result of splitting)
% split_error - error of splitting
function [tree_node_left, tree_node_right, split_error] = do_learn_nu(tree_node, dataset, labels, weights, papa)
tree_node_left = tree_node;
tree_node_right = tree_node;
if(nargin > 4)
tree_node_left.parent = papa;
tree_node_right.parent = papa;
end
% [i,t] = weakLearner(weights,dataset', labels');
%
% tree_node_left.right_constrain = t;
% tree_node_right.left_constrain = t;
%
% tree_node_left.dim = i;
% tree_node_right.dim = i;
%
% return;
%dataset=data_w(dataset) ;
%stump = set_distr(stump, get_sampl_weights(dataset)) ;
Distr = weights;
%[trainpat, traintarg] = get_train( dataset);
trainpat = dataset;
traintarg = labels;
tr_size = size(trainpat, 2);
T_MIN = zeros(3,size(trainpat,1));
d_min = 1;
d_max = size(trainpat,1);
for d = d_min : d_max;
[DS, IX] = sort(trainpat(d,:));
TS = traintarg(IX);
DiS = Distr(IX);
lDS = length(DS);
vPos = 0 * TS;
vNeg = vPos;
i = 1;
j = 1;
while i <= lDS
k = 0;
while i + k <= lDS && DS(i) == DS(i+k)
if(TS(i+k) > 0)
vPos(j) = vPos(j) + DiS(i+k);
else
vNeg(j) = vNeg(j) + DiS(i+k);
end
k = k + 1;
end
i = i + k;
j = j + 1;
end
vNeg = vNeg(1:j-1);
vPos = vPos(1:j-1);
Error = zeros(1, j - 1);
InvError = Error;
IPos = vPos;
INeg = vNeg;
for i = 2 : length(IPos)
IPos(i) = IPos(i-1) + vPos(i);
INeg(i) = INeg(i-1) + vNeg(i);
end
Ntot = INeg(end);
Ptot = IPos(end);
for i = 1 : j - 1
Error(i) = IPos(i) + Ntot - INeg(i);
InvError(i) = INeg(i) + Ptot - IPos(i);
end
idx_of_err_min = find(Error == min(Error));
if(length(idx_of_err_min) < 1)
idx_of_err_min = 1;
end
if(length(idx_of_err_min) <1)
idx_of_err_min = idx_of_err_min;
end
idx_of_err_min = idx_of_err_min(1);
idx_of_inv_err_min = find(InvError == min(InvError));
if(length(idx_of_inv_err_min) < 1)
idx_of_inv_err_min = 1;
end
idx_of_inv_err_min = idx_of_inv_err_min(1);
if(Error(idx_of_err_min) < InvError(idx_of_inv_err_min))
T_MIN(1,d) = Error(idx_of_err_min);
T_MIN(2,d) = idx_of_err_min;
T_MIN(3,d) = -1;
else
T_MIN(1,d) = InvError(idx_of_inv_err_min);
T_MIN(2,d) = idx_of_inv_err_min;
T_MIN(3,d) = 1;
end
end
dim = [];
best_dim = find(T_MIN(1,:) == min(T_MIN(1,:)));
dim = best_dim(1);
tree_node_left.dim = dim;
tree_node_right.dim = dim;
TDS = sort(trainpat(dim,:));
lDS = length(TDS);
DS = TDS * 0;
i = 1;
j = 1;
while i <= lDS
k = 0;
while i + k <= lDS && TDS(i) == TDS(i+k)
DS(j) = TDS(i);
k = k + 1;
end
i = i + k;
j = j + 1;
end
DS = DS(1:j-1);
split = (DS(T_MIN(2,dim)) + DS(min(T_MIN(2,dim) + 1, length(DS)))) / 2;
split_error = T_MIN(1,dim);
tree_node_left.right_constrain = split;
tree_node_right.left_constrain = split;
function [i,t] = weakLearner(distribution,train,label)
%disp('run weakLearner');
for tt = unique(train)%1:(16*256-1)
error(tt)=(label .* distribution) * ((train(:,floor(tt/16)+1)>=16*(mod(tt,16)+1)));
end
[val,tt]=max(abs(error-0.5));
i=floor(tt/16)+1;
t=16*(mod(tt,16)+1);
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -