📄 jpegencoder.java
字号:
quantum_chrominance[37]=99; quantum_chrominance[38]=99; quantum_chrominance[39]=99; quantum_chrominance[40]=99; quantum_chrominance[41]=99; quantum_chrominance[42]=99; quantum_chrominance[43]=99; quantum_chrominance[44]=99; quantum_chrominance[45]=99; quantum_chrominance[46]=99; quantum_chrominance[47]=99; quantum_chrominance[48]=99; quantum_chrominance[49]=99; quantum_chrominance[50]=99; quantum_chrominance[51]=99; quantum_chrominance[52]=99; quantum_chrominance[53]=99; quantum_chrominance[54]=99; quantum_chrominance[55]=99; quantum_chrominance[56]=99; quantum_chrominance[57]=99; quantum_chrominance[58]=99; quantum_chrominance[59]=99; quantum_chrominance[60]=99; quantum_chrominance[61]=99; quantum_chrominance[62]=99; quantum_chrominance[63]=99; for (j = 0; j < 64; j++) { temp = (quantum_chrominance[j] * Quality + 50) / 100; if ( temp <= 0) temp = 1; if (temp >= 255) temp = 255; quantum_chrominance[j] = temp; } index = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) {// The divisors for the LL&M method (the slow integer method used in// jpeg 6a library). This method is currently (04/04/98) incompletely// implemented.// DivisorsChrominance[index] = ((double) quantum_chrominance[index]) << 3;// The divisors for the AAN method (the float method used in jpeg 6a library. DivisorsChrominance[index] = (double) ((double)1.0/((double) quantum_chrominance[index] * AANscaleFactor[i] * AANscaleFactor[j] * (double)8.0)); index++; } }// quantum and Divisors are objects used to hold the appropriate matices quantum[0] = quantum_luminance; Divisors[0] = DivisorsLuminance; quantum[1] = quantum_chrominance; Divisors[1] = DivisorsChrominance; } /* * This method preforms forward DCT on a block of image data using * the literal method specified for a 2-D Discrete Cosine Transform. * It is included as a curiosity and can give you an idea of the * difference in the compression result (the resulting image quality) * by comparing its output to the output of the AAN method below. * It is ridiculously inefficient. */// For now the final output is unusable. The associated quantization step// needs some tweaking. If you get this part working, please let me know. public double[][] forwardDCTExtreme(float input[][]) { double output[][] = new double[N][N]; double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; double tmp10, tmp11, tmp12, tmp13; double z1, z2, z3, z4, z5, z11, z13; int i; int j; int v, u, x, y; for (v = 0; v < 8; v++) { for (u = 0; u < 8; u++) { for (x = 0; x < 8; x++) { for (y = 0; y < 8; y++) { output[v][u] += ((double)input[x][y])*Math.cos(((double)(2*x + 1)*(double)u*Math.PI)/(double)16)*Math.cos(((double)(2*y + 1)*(double)v*Math.PI)/(double)16); } } output[v][u] *= (double)(0.25)*((u == 0) ? ((double)1.0/Math.sqrt(2)) : (double) 1.0)*((v == 0) ? ((double)1.0/Math.sqrt(2)) : (double) 1.0); } } return output; } /* * This method preforms a DCT on a block of image data using the AAN * method as implemented in the IJG Jpeg-6a library. */ public double[][] forwardDCT(float input[][]) { double output[][] = new double[N][N]; double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; double tmp10, tmp11, tmp12, tmp13; double z1, z2, z3, z4, z5, z11, z13; int i; int j;// Subtracts 128 from the input values for (i = 0; i < 8; i++) { for(j = 0; j < 8; j++) { output[i][j] = ((double)input[i][j] - (double)128.0);// input[i][j] -= 128; } } for (i = 0; i < 8; i++) { tmp0 = output[i][0] + output[i][7]; tmp7 = output[i][0] - output[i][7]; tmp1 = output[i][1] + output[i][6]; tmp6 = output[i][1] - output[i][6]; tmp2 = output[i][2] + output[i][5]; tmp5 = output[i][2] - output[i][5]; tmp3 = output[i][3] + output[i][4]; tmp4 = output[i][3] - output[i][4]; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; output[i][0] = tmp10 + tmp11; output[i][4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * (double) 0.707106781; output[i][2] = tmp13 + z1; output[i][6] = tmp13 - z1; tmp10 = tmp4 + tmp5; tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; z5 = (tmp10 - tmp12) * (double) 0.382683433; z2 = ((double) 0.541196100) * tmp10 + z5; z4 = ((double) 1.306562965) * tmp12 + z5; z3 = tmp11 * ((double) 0.707106781); z11 = tmp7 + z3; z13 = tmp7 - z3; output[i][5] = z13 + z2; output[i][3] = z13 - z2; output[i][1] = z11 + z4; output[i][7] = z11 - z4; } for (i = 0; i < 8; i++) { tmp0 = output[0][i] + output[7][i]; tmp7 = output[0][i] - output[7][i]; tmp1 = output[1][i] + output[6][i]; tmp6 = output[1][i] - output[6][i]; tmp2 = output[2][i] + output[5][i]; tmp5 = output[2][i] - output[5][i]; tmp3 = output[3][i] + output[4][i]; tmp4 = output[3][i] - output[4][i]; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; output[0][i] = tmp10 + tmp11; output[4][i] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * (double) 0.707106781; output[2][i] = tmp13 + z1; output[6][i] = tmp13 - z1; tmp10 = tmp4 + tmp5; tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; z5 = (tmp10 - tmp12) * (double) 0.382683433; z2 = ((double) 0.541196100) * tmp10 + z5; z4 = ((double) 1.306562965) * tmp12 + z5; z3 = tmp11 * ((double) 0.707106781); z11 = tmp7 + z3; z13 = tmp7 - z3; output[5][i] = z13 + z2; output[3][i] = z13 - z2; output[1][i] = z11 + z4; output[7][i] = z11 - z4; } return output; } /* * This method quantitizes data and rounds it to the nearest integer. */ public int[] quantizeBlock(double inputData[][], int code) { int outputData[] = new int[N*N]; int i, j; int index; index = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) {// The second line results in significantly better compression. outputData[index] = (int)(Math.round(inputData[i][j] * (((double[]) (Divisors[code]))[index])));// outputData[index] = (int)(((inputData[i][j] * (((double[]) (Divisors[code]))[index])) + 16384.5) -16384); index++; } } return outputData; } /* * This is the method for quantizing a block DCT'ed with forwardDCTExtreme * This method quantitizes data and rounds it to the nearest integer. */ public int[] quantizeBlockExtreme(double inputData[][], int code) { int outputData[] = new int[N*N]; int i, j; int index; index = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { outputData[index] = (int)(Math.round(inputData[i][j] / (double)(((int[]) (quantum[code]))[index]))); index++; } } return outputData; }}// This class was modified by James R. Weeks on 3/27/98.// It now incorporates Huffman table derivation as in the C jpeg library// from the IJG, Jpeg-6a.class Huffman{ int bufferPutBits, bufferPutBuffer; public int ImageHeight; public int ImageWidth; public int DC_matrix0[][]; public int AC_matrix0[][]; public int DC_matrix1[][]; public int AC_matrix1[][]; public Object DC_matrix[]; public Object AC_matrix[]; public int code; public int NumOfDCTables; public int NumOfACTables; public int[] bitsDCluminance = { 0x00, 0, 1, 5, 1, 1,1,1,1,1,0,0,0,0,0,0,0}; public int[] valDCluminance = { 0,1,2,3,4,5,6,7,8,9,10,11 }; public int[] bitsDCchrominance = { 0x01,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 }; public int[] valDCchrominance = { 0,1,2,3,4,5,6,7,8,9,10,11 }; public int[] bitsACluminance = {0x10,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d }; public int[] valACluminance = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; public int[] bitsACchrominance = { 0x11,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };; public int[] valACchrominance = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; public Vector bits; public Vector val; /* * jpegNaturalOrder[i] is the natural-order position of the i'th element * of zigzag order. */ public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, }; /* * The Huffman class constructor */ public Huffman(int Width,int Height) { bits = new Vector(); bits.addElement(bitsDCluminance); bits.addElement(bitsACluminance); bits.addElement(bitsDCchrominance); bits.addElement(bitsACchrominance); val = new Vector(); val.addElement(valDCluminance); val.addElement(valACluminance); val.addElement(valDCchrominance); val.addElement(valACchrominance); initHuf(); code=code; ImageWidth=Width; ImageHeight=Height; } /** * HuffmanBlockEncoder run length encodes and Huffman encodes the quantized * data. **/ public void HuffmanBlockEncoder(BufferedOutputStream outStream, int zigzag[], int prec, int DCcode, int ACcode) { int temp, temp2, nbits, k, r, i; NumOfDCTables = 2; NumOfACTables = 2;// The DC portion temp = temp2 = zigzag[0] - prec; if(temp < 0) { temp = -temp; temp2--; } nbits = 0; while (temp != 0) { nbits++; temp >>= 1; }// if (nbits > 11) nbits = 11; bufferIt(outStream, ((int[][])DC_matrix[DCcode])[nbits][0], ((int[][])DC_matrix[DCcode])[nbits][1]); // The arguments in bufferIt are code and size. if (nbits != 0) { bufferIt(outStream, temp2, nbits); }// The AC portion r = 0; for (k = 1; k < 64; k++) { if ((temp = zigzag[jpegNaturalOrder[k]]) == 0) { r++; } else { while (r > 15) { bufferIt(outStream, ((int[][])AC_matrix[ACcode])[0xF0][0], ((int[][])AC_matrix[ACcode])[0xF0][1]); r -= 16; } temp2 = temp; if (temp < 0) { temp = -temp; temp2--; } nbits = 1; while ((temp >>= 1) != 0) { nbits++; } i = (r << 4) + nbits; bufferIt(outStream, ((int[][])AC_matrix[ACcode])[i][0], ((int[][])AC_matrix[ACcode])[i][1]); bufferIt(outStream, temp2, nbits); r = 0; } } if (r > 0) { bufferIt(outStream, ((int[][])AC_matrix[ACcode])[0][0], ((int[][])AC_matrix[ACcode])[0][1]); } }// Uses an integer long (32 bits) buffer to store the Huffman encoded bits// and sends them to outStream by the byte. void bufferIt(BufferedOutputStream outStream, int code,int size) { int PutBuffer = code; int PutBits = bufferPutBits; PutBuffer &= (1 << size) - 1; PutBits += size; PutBuffer <<= 24 - PutBits; PutBuffer |= bufferPutBuffer; while(PutBits >= 8) { int c = ((PutBuffer >> 16) & 0xFF); try { outStream.write(c); } catch (IOException e) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -