⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jpegencoder.java

📁 基于JPEG图像的数字密写方法 F5算法的JAVA程序
💻 JAVA
📖 第 1 页 / 共 4 页
字号:
        quantum_chrominance[37]=99;        quantum_chrominance[38]=99;        quantum_chrominance[39]=99;        quantum_chrominance[40]=99;        quantum_chrominance[41]=99;        quantum_chrominance[42]=99;        quantum_chrominance[43]=99;        quantum_chrominance[44]=99;        quantum_chrominance[45]=99;        quantum_chrominance[46]=99;        quantum_chrominance[47]=99;        quantum_chrominance[48]=99;        quantum_chrominance[49]=99;        quantum_chrominance[50]=99;        quantum_chrominance[51]=99;        quantum_chrominance[52]=99;        quantum_chrominance[53]=99;        quantum_chrominance[54]=99;        quantum_chrominance[55]=99;        quantum_chrominance[56]=99;        quantum_chrominance[57]=99;        quantum_chrominance[58]=99;        quantum_chrominance[59]=99;        quantum_chrominance[60]=99;        quantum_chrominance[61]=99;        quantum_chrominance[62]=99;        quantum_chrominance[63]=99;        for (j = 0; j < 64; j++)        {                temp = (quantum_chrominance[j] * Quality + 50) / 100;                if ( temp <= 0) temp = 1;                if (temp >= 255) temp = 255;                quantum_chrominance[j] = temp;        }        index = 0;        for (i = 0; i < 8; i++) {                for (j = 0; j < 8; j++) {// The divisors for the LL&M method (the slow integer method used in// jpeg 6a library).  This method is currently (04/04/98) incompletely// implemented.//                        DivisorsChrominance[index] = ((double) quantum_chrominance[index]) << 3;// The divisors for the AAN method (the float method used in jpeg 6a library.                        DivisorsChrominance[index] = (double) ((double)1.0/((double) quantum_chrominance[index] * AANscaleFactor[i] * AANscaleFactor[j] * (double)8.0));                        index++;                }        }// quantum and Divisors are objects used to hold the appropriate matices        quantum[0] = quantum_luminance;        Divisors[0] = DivisorsLuminance;        quantum[1] = quantum_chrominance;        Divisors[1] = DivisorsChrominance;    }    /*     * This method preforms forward DCT on a block of image data using     * the literal method specified for a 2-D Discrete Cosine Transform.     * It is included as a curiosity and can give you an idea of the     * difference in the compression result (the resulting image quality)     * by comparing its output to the output of the AAN method below.     * It is ridiculously inefficient.     */// For now the final output is unusable.  The associated quantization step// needs some tweaking.  If you get this part working, please let me know.    public double[][] forwardDCTExtreme(float input[][])    {        double output[][] = new double[N][N];        double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;        double tmp10, tmp11, tmp12, tmp13;        double z1, z2, z3, z4, z5, z11, z13;        int i;        int j;        int v, u, x, y;        for (v = 0; v < 8; v++) {                for (u = 0; u < 8; u++) {                        for (x = 0; x < 8; x++) {                                for (y = 0; y < 8; y++) {                                        output[v][u] += ((double)input[x][y])*Math.cos(((double)(2*x + 1)*(double)u*Math.PI)/(double)16)*Math.cos(((double)(2*y + 1)*(double)v*Math.PI)/(double)16);                                }                        }                        output[v][u] *= (double)(0.25)*((u == 0) ? ((double)1.0/Math.sqrt(2)) : (double) 1.0)*((v == 0) ? ((double)1.0/Math.sqrt(2)) : (double) 1.0);                }        }        return output;    }                                                                    /*     * This method preforms a DCT on a block of image data using the AAN     * method as implemented in the IJG Jpeg-6a library.     */    public double[][] forwardDCT(float input[][])    {        double output[][] = new double[N][N];        double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;        double tmp10, tmp11, tmp12, tmp13;        double z1, z2, z3, z4, z5, z11, z13;        int i;        int j;// Subtracts 128 from the input values        for (i = 0; i < 8; i++) {                for(j = 0; j < 8; j++) {                        output[i][j] = ((double)input[i][j] - (double)128.0);//                        input[i][j] -= 128;                }        }        for (i = 0; i < 8; i++) {                tmp0 = output[i][0] + output[i][7];                tmp7 = output[i][0] - output[i][7];                tmp1 = output[i][1] + output[i][6];                tmp6 = output[i][1] - output[i][6];                tmp2 = output[i][2] + output[i][5];                tmp5 = output[i][2] - output[i][5];                tmp3 = output[i][3] + output[i][4];                tmp4 = output[i][3] - output[i][4];                tmp10 = tmp0 + tmp3;                tmp13 = tmp0 - tmp3;                tmp11 = tmp1 + tmp2;                tmp12 = tmp1 - tmp2;                output[i][0] = tmp10 + tmp11;                output[i][4] = tmp10 - tmp11;                z1 = (tmp12 + tmp13) * (double) 0.707106781;                output[i][2] = tmp13 + z1;                output[i][6] = tmp13 - z1;                tmp10 = tmp4 + tmp5;                tmp11 = tmp5 + tmp6;                tmp12 = tmp6 + tmp7;                z5 = (tmp10 - tmp12) * (double) 0.382683433;                z2 = ((double) 0.541196100) * tmp10 + z5;                z4 = ((double) 1.306562965) * tmp12 + z5;                z3 = tmp11 * ((double) 0.707106781);                z11 = tmp7 + z3;                z13 = tmp7 - z3;                output[i][5] = z13 + z2;                output[i][3] = z13 - z2;                output[i][1] = z11 + z4;                output[i][7] = z11 - z4;        }        for (i = 0; i < 8; i++) {                tmp0 = output[0][i] + output[7][i];                tmp7 = output[0][i] - output[7][i];                tmp1 = output[1][i] + output[6][i];                tmp6 = output[1][i] - output[6][i];                tmp2 = output[2][i] + output[5][i];                tmp5 = output[2][i] - output[5][i];                tmp3 = output[3][i] + output[4][i];                tmp4 = output[3][i] - output[4][i];                tmp10 = tmp0 + tmp3;                tmp13 = tmp0 - tmp3;                tmp11 = tmp1 + tmp2;                tmp12 = tmp1 - tmp2;                output[0][i] = tmp10 + tmp11;                output[4][i] = tmp10 - tmp11;                z1 = (tmp12 + tmp13) * (double) 0.707106781;                output[2][i] = tmp13 + z1;                output[6][i] = tmp13 - z1;                tmp10 = tmp4 + tmp5;                tmp11 = tmp5 + tmp6;                tmp12 = tmp6 + tmp7;                z5 = (tmp10 - tmp12) * (double) 0.382683433;                z2 = ((double) 0.541196100) * tmp10 + z5;                z4 = ((double) 1.306562965) * tmp12 + z5;                z3 = tmp11 * ((double) 0.707106781);                z11 = tmp7 + z3;                z13 = tmp7 - z3;                output[5][i] = z13 + z2;                output[3][i] = z13 - z2;                output[1][i] = z11 + z4;                output[7][i] = z11 - z4;        }        return output;    }    /*    * This method quantitizes data and rounds it to the nearest integer.    */    public int[] quantizeBlock(double inputData[][], int code)    {        int outputData[] = new int[N*N];        int i, j;        int index;        index = 0;        for (i = 0; i < 8; i++) {                for (j = 0; j < 8; j++) {// The second line results in significantly better compression.                        outputData[index] = (int)(Math.round(inputData[i][j] * (((double[]) (Divisors[code]))[index])));//                        outputData[index] = (int)(((inputData[i][j] * (((double[]) (Divisors[code]))[index])) + 16384.5) -16384);                        index++;                }        }        return outputData;    }    /*    * This is the method for quantizing a block DCT'ed with forwardDCTExtreme    * This method quantitizes data and rounds it to the nearest integer.    */    public int[] quantizeBlockExtreme(double inputData[][], int code)    {        int outputData[] = new int[N*N];        int i, j;        int index;        index = 0;        for (i = 0; i < 8; i++) {                for (j = 0; j < 8; j++) {                        outputData[index] = (int)(Math.round(inputData[i][j] / (double)(((int[]) (quantum[code]))[index])));                        index++;                }        }        return outputData;    }}// This class was modified by James R. Weeks on 3/27/98.// It now incorporates Huffman table derivation as in the C jpeg library// from the IJG, Jpeg-6a.class Huffman{    int bufferPutBits, bufferPutBuffer;        public int ImageHeight;    public int ImageWidth;    public int DC_matrix0[][];    public int AC_matrix0[][];    public int DC_matrix1[][];    public int AC_matrix1[][];    public Object DC_matrix[];    public Object AC_matrix[];    public int code;    public int NumOfDCTables;    public int NumOfACTables;    public int[] bitsDCluminance = { 0x00, 0, 1, 5, 1, 1,1,1,1,1,0,0,0,0,0,0,0};    public int[] valDCluminance = { 0,1,2,3,4,5,6,7,8,9,10,11 };    public int[] bitsDCchrominance = { 0x01,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };    public int[] valDCchrominance = { 0,1,2,3,4,5,6,7,8,9,10,11 };    public int[] bitsACluminance = {0x10,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };    public int[] valACluminance =        { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,          0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,          0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,          0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,          0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,          0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,          0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,          0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,          0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,          0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,          0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,          0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,          0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,          0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,          0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,          0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,          0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,          0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,          0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,          0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,          0xf9, 0xfa };    public int[] bitsACchrominance = { 0x11,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };;    public int[] valACchrominance =         { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,          0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,          0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,          0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,          0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,          0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,          0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,           0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,           0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,           0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,           0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,           0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,           0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,           0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,           0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,           0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,           0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,           0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,           0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,           0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,          0xf9, 0xfa };    public Vector bits;    public Vector val;    /*     * jpegNaturalOrder[i] is the natural-order position of the i'th element     * of zigzag order.     */    public static int[] jpegNaturalOrder = {          0,  1,  8, 16,  9,  2,  3, 10,         17, 24, 32, 25, 18, 11,  4,  5,         12, 19, 26, 33, 40, 48, 41, 34,         27, 20, 13,  6,  7, 14, 21, 28,         35, 42, 49, 56, 57, 50, 43, 36,         29, 22, 15, 23, 30, 37, 44, 51,         58, 59, 52, 45, 38, 31, 39, 46,         53, 60, 61, 54, 47, 55, 62, 63,        };    /*    * The Huffman class constructor    */        public Huffman(int Width,int Height)	{            bits = new Vector();            bits.addElement(bitsDCluminance);            bits.addElement(bitsACluminance);            bits.addElement(bitsDCchrominance);            bits.addElement(bitsACchrominance);            val = new Vector();            val.addElement(valDCluminance);            val.addElement(valACluminance);            val.addElement(valDCchrominance);            val.addElement(valACchrominance);            initHuf();	    code=code;            ImageWidth=Width;            ImageHeight=Height;	}   /**   * HuffmanBlockEncoder run length encodes and Huffman encodes the quantized   * data.   **/        public void HuffmanBlockEncoder(BufferedOutputStream outStream, int zigzag[], int prec, int DCcode, int ACcode)	{        int temp, temp2, nbits, k, r, i;        NumOfDCTables = 2;        NumOfACTables = 2;// The DC portion        temp = temp2 = zigzag[0] - prec;        if(temp < 0) {                temp = -temp;                temp2--;        }        nbits = 0;        while (temp != 0) {                nbits++;                temp >>= 1;        }//        if (nbits > 11) nbits = 11;        bufferIt(outStream, ((int[][])DC_matrix[DCcode])[nbits][0], ((int[][])DC_matrix[DCcode])[nbits][1]);        // The arguments in bufferIt are code and size.        if (nbits != 0) {                bufferIt(outStream, temp2, nbits);        }// The AC portion        r = 0;        for (k = 1; k < 64; k++) {                if ((temp = zigzag[jpegNaturalOrder[k]]) == 0) {                        r++;                }                else {                        while (r > 15) {                                bufferIt(outStream, ((int[][])AC_matrix[ACcode])[0xF0][0], ((int[][])AC_matrix[ACcode])[0xF0][1]);                                r -= 16;                        }                        temp2 = temp;                        if (temp < 0) {                                temp = -temp;                                temp2--;                        }                        nbits = 1;                        while ((temp >>= 1) != 0) {                                nbits++;                        }                        i = (r << 4) + nbits;                        bufferIt(outStream, ((int[][])AC_matrix[ACcode])[i][0], ((int[][])AC_matrix[ACcode])[i][1]);                        bufferIt(outStream, temp2, nbits);                        r = 0;                }        }        if (r > 0) {                bufferIt(outStream, ((int[][])AC_matrix[ACcode])[0][0], ((int[][])AC_matrix[ACcode])[0][1]);        }	}// Uses an integer long (32 bits) buffer to store the Huffman encoded bits// and sends them to outStream by the byte.        void bufferIt(BufferedOutputStream outStream, int code,int size)	{        int PutBuffer = code;        int PutBits = bufferPutBits;        PutBuffer &= (1 << size) - 1;        PutBits += size;        PutBuffer <<= 24 - PutBits;        PutBuffer |= bufferPutBuffer;        while(PutBits >= 8) {                int c = ((PutBuffer >> 16) & 0xFF);                try                {                        outStream.write(c);                }                catch (IOException e) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -