⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gibbs.cpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 CPP
📖 第 1 页 / 共 3 页
字号:
	bnew = mmax(i__2,i__3);/* L110: */    }/*      if(impre.ne.0) then *//*        write(nfout,*)'profile  old  = ',pfold,', profile  new = ',pfnew *//*        write(nfout,*)'1/2 bande old = ',bold ,', 1/2 band new = ',bnew *//*      endif */return 0;} /* gibbsa_ *//* Subroutine */ int gibbsb_(integer* x,integer*  y,integer*  n,integer*  ptvois,integer*  vois,integer*  nx,integer*  ny,integer*  nv,integer*  nn,integer*  m,integer*  wh,integer*  wl,integer* r, integer* , integer* ){    /* System generated locals */    integer i__1, i__2;    /* Local variables */    static int flag_;    static integer i, j, k, p, s, h0, i1, l0, i2;/*    extern  Subroutine  int gibbs1_(); */    static integer lg;/*    extern  Subroutine  int gibbsd_(), gibbsc_();*/    static integer niveau, mxcanx, mxcany, nbc;/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ *//* ...................................................................... *//*     attention on met la descente optimiser dans r <0 ou nulle *//* ....................................................................... */    /* Parameter adjustments */    --r;    --m;    --ny;    --nx;    --vois;    --ptvois;    /* Function Body */    gibbsd_(y, n, &ptvois[1], &vois[1], nv, &r[1], &niveau);    gibbsc_(&ny[1], nv, &niveau, n, &mxcany);    gibbsd_(x, n, &ptvois[1], &vois[1], nv, &r[1], &niveau);    p = niveau;    gibbsc_(&nx[1], nv, &niveau, n, &mxcanx);    flag_ = ffalse;    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	if (nx[i] + ny[i] == p) {	    r[i] = -nx[i];	} else if (nx[i] >= 0) {	    flag_ = ttrue;	    r[i] = -1073741824;	} else {	    if (r[i] <= 0) {		r[i] = -1073741822;	    }	}/* L20: */    }    if (flag_) {/*       calcul des composantes connexe du graphe sans les sommets de nn *//*       --------------------------------------------------------------- */	j = *n;	k = 0;	nbc = 0;	nv[nbc] = j;L30:	++k;	if (k <= *n) {	    if (r[k] == -1073741824) {/*           recherche de la fermeture transitive partant de k */		++nbc;		i = -1;		s = k;L40:		++i;		wl[i] = ptvois[s];		wh[i] = ptvois[s + 1];		++j;		nv[j] = s;		r[s] = -1073741823;L50:		if (i >= 0) {		    if (wl[i] < wh[i]) {			s = vois[wl[i]];			++wl[i];			if (r[s] == -1073741824) {			    goto L40;			}			goto L50;		    }		    --i;		    goto L50;		}		nv[nbc] = j;		m[nbc] = nbc;	    }	    goto L30;	}/*        if(impre.lt.0) write(nfout,*) *//*     +         ' nb de composante connexe du graphe reduit =',nbc *//* --------------- fin de construction des composantes connexes--------- *//*        nv(0)=n *//*        if(impre.le.-10) write(nfout,5555)'nv(0:n+n) = ',(nv(i),i=0,n+n) */	gibbs1_(&nbc, &m[1], nv);/*        if(impre.le.-10)write(nfout,5555)'trie m =',(m(i),i=1,nbc) */	i__1 = p;	for (i = 0; i <= i__1; ++i) {	    nn[i] = 0;/* L60: */	}	i__1 = *n;	for (i = 1; i <= i__1; ++i) {	    j = -r[i];	    if (j >= 0 && j <= p) {		++nn[j];	    }/* L70: */	}/*       boucle sur les composante connexes par ordre croissantes *//*       -------------------------------------------------------- */	for (k = nbc; k >= 1; --k) {	    i = m[k];	    i1 = nv[i - 1] + 1;	    i2 = nv[i];	    lg = i2 - i1 + 1;/*         if(impre.le.-7) *//*     +       write(nfout,*) k,' composante ',i,',lg=',lg,',i1,i2=',i1,i2 *//*         if(impre.le.-8) *//*     +       write (nfout,5555)' ',(nv(i),i=i1,i2) */	    h0 = 0;	    l0 = 0;	    i__1 = p;	    for (j = 0; j <= i__1; ++j) {		wh[j] = nn[j];		wl[j] = nn[j];/* L90: */	    }	    i__1 = i2;	    for (i = i1; i <= i__1; ++i) {		s = nv[i];		++wh[nx[s]];		++wl[p - ny[s]];/* L100: */	    }	    i__1 = p;	    for (j = 0; j <= i__1; ++j) {		if (wh[j] != nn[j]) {/* Computing MAX */		    i__2 = wh[j];		    h0 = mmax(i__2,h0);		}		if (wl[j] != nn[j]) {/* Computing MAX */		    i__2 = wl[j];		    l0 = mmax(i__2,l0);		}/* L110: */	    }	    if (h0 < l0 || h0 == l0 && mxcanx <= mxcany) {/*           if(impre.le.-2) write(nfout,*) *//*     +       '         h0 = ',h0,',l0 = ',l0,'  ------- XXXX --------' */		i__1 = i2;		for (i = i1; i <= i__1; ++i) {		    s = nv[i];		    r[s] = -nx[s];		    ++nn[-r[s]];/* L120: */		}	    } else {/*           if (impre.le.-2) write(nfout,*) *//*     +       '         h0 = ',h0,',l0 = ',l0,'  ------- YYYY --------' */		i__1 = i2;		for (i = i1; i <= i__1; ++i) {		    s = nv[i];		    r[s] = -p + ny[s];		    ++nn[-r[s]];/* L130: */		}	    }/* L140: */	}    }/*     on met les nouveaux niveaux de la descendance optimiser dans nn *//*     ----------------------------------------------------------------- */    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	if (r[i] > 0) {	    nn[i] = -1;	} else if (r[i] == -1073741822) {	    nn[i] = -2;	} else {	    nn[i] = -r[i];	}/* L150: */    }/*      if(impre.le.-10)write (nfout,5555)' nn(i)=',(nn(i),i=1,n) *//* 5555  format('            --------   ',a,/,5(15x,10(i5)/)) */return 0;} /* gibbsb_ *//* Subroutine */ int gibbsc_(integer* nz,integer*  nv,integer*  niveau,integer*  n,integer*  mxz){    /* System generated locals */    integer i__1, i__2, i__3;    /* Local variables */    static integer i, j;/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */    /* Parameter adjustments */    --nz;    /* Function Body */    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	nz[i] = -1;/* L10: */    }    *mxz = 0;    i__1 = *niveau;    for (i = 0; i <= i__1; ++i) {/* Computing MAX */	i__2 = *mxz, i__3 = nv[i + 1] - nv[i];	*mxz = mmax(i__2,i__3);	i__2 = nv[i + 1];	for (j = nv[i] + 1; j <= i__2; ++j) {	    nz[nv[j]] = i;/* L20: */	}    }return 0;} /* gibbsc_ *//* Subroutine */ int gibbsd_(integer* racine,integer*  n,integer*  ptvois,integer*  vois,integer*  nv,integer*  r,integer*  niveau){    /* System generated locals */    integer i__1, i__2;    /* Local variables */    static integer i, k, s, sv, stk, stk1, stk2;/* ----------------------------------------------------------------------- *//*     but construire la structure des descendant de racine  du graphe *//* ----------------------------------------------------------------------- *//*     sortie : *//*     -------- *//*     nv est la structure des niveaux *//*     les sommets du niveau (i =0,niveau_ sont defini par : *//*        (nv(j),j=nv(i),nv(i+1)-1) *//*     le tableau r(i) n'est modifier que sur les sommets *//*       de la composante connexe du graphe contenant la racine *//* ----------------------------------------------------------------------- *//*     on demark tout les sommets non remuneroter *//* -------------------------------------------------- */    /* Parameter adjustments */    --r;    --vois;    --ptvois;    /* Function Body */    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	if (r[i] < 0) {	    r[i] = 0;	}/* L10: */    }/*    initialisation */    stk = *n - 1;    nv[0] = stk;    stk2 = stk;    *niveau = 0;    ++stk;    nv[stk] = *racine;    r[*racine] = -1;L20:    if (stk2 < stk) {	++(*niveau);	stk1 = stk2 + 1;	nv[*niveau] = stk;	stk2 = stk;/*        print *,' ------- niveau =',niveau,' stk=',stk1,stk2 */	i__1 = stk2;	for (k = stk1; k <= i__1; ++k) {	    s = nv[k];/*         print *,'----------------- s=',s */	    i__2 = ptvois[s + 1] - 1;	    for (i = ptvois[s]; i <= i__2; ++i) {/*               pour tout les sommets (sv) voisin *//*                d'un sommet (s) du niveau precedent */		sv = vois[i];/*          print *,' voisin =',sv *//*               si le sommet n'est pas marque on le marque et on l'ajout */		if (r[sv] == 0) {		    ++stk;		    nv[stk] = sv;		    r[sv] = -1;		}/* L30: */	    }/* L40: */	}	goto L20;    }    --(*niveau);/*      call pnv(' gibbsd ',n,nv,niveau) */return 0;} /* gibbsd_ *//* Subroutine */ int gibbst_(integer* n,integer*  p,integer*  nv,integer*  nn,integer*  ptvois,integer*  vois,integer*  m,integer*  r,integer*  new_,integer*  option, 	integer* pfnew,integer*  impre,integer*  ){    /* System generated locals */    integer i__1, i__2, i__3, i__4, i__5;    /* Local variables */    static integer nbsc, bnew, knew, step, plus, i, j, k, s, debut, i1, i2;/*    extern Subroutine int gibbs2_();*/    static integer fin;/*     construction de la stucture de niveau dans nv a partir de nn *//*     ------------------------------------------------------------ */    /* Parameter adjustments */    --r;    --m;    --vois;    --ptvois;    /* Function Body */    nv[0] = *n;    i__1 = *p + 1;    for (i = 1; i <= i__1; ++i) {	nv[i] = 0;/* L150: */    }    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	if (nn[i] >= 0) {	    ++nv[nn[i] + 1];	}/* L160: */    }    i__1 = *p;    for (i = 0; i <= i__1; ++i) {	nv[i + 1] += nv[i];/* L170: */    }    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	if (nn[i] >= 0) {	    j = nn[i];	    ++nv[j];	    nv[nv[j]] = i;	}/* L180: */    }    for (i = *p; i >= 0; --i) {	nv[i + 1] = nv[i];/* L190: */    }    nv[0] = *n;    nbsc = nv[*p + 1] - nv[0];/*     --- fin de la construction ------------------------------------ */    if (*option == -2) {	i__1 = *impre - 1;    }    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	m[i] = *n * 3 + ptvois[i + 1] - ptvois[i];/* L10: */    }    if ((((int)*option) == 1)||(((int)*option) == -1)) {	debut = 0;	fin = *p;	step = 1;    } else {	debut = *p;	fin = 0;	step = -1;    }    i__1 = fin;    i__2 = step;    for (i = debut; i__2 < 0 ? i >= i__1 : i <= i__1; i += i__2) {	i1 = nv[i] + 1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -